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DEFINITIONS
10A publishes the following documents to report the results of its work.

Reports ' ‘
Reports are the most authoritative and most caretully considered products DA publishes.
They normaily embody fesults of major projacts which (a) have a direct bearing on
dscisions ‘affecting major programs, (b) address issues of signiticant concarn to the
Executive Branch, the Congress and/or the public, or (c) address issues that have
signiticant economic implications. iDA Reports are reviewed by outside paneis of experts
ts ensure their high guality and reiavance to the probloms studied, and they are released
by the President of DA :

1

'Growp Reports record the findings and resuits of IDA sstablished working groups and
paneis composed of senior individuals addressing major issues which otherwiss woauld be
the subject of an IDA Report. DA Group Renceis are raviewed by the senior individuals
responsibie for the projact and others as selscted by IDA to ensure their high quality and
relevancs to the probiems studied, and are reieased by the President of ICA.
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Papers '

Papars, aiso authoritative and carefully considered products of IDA, address studies that
are narrower in scoje than thoss coveced in Reports. (DA Papers are reviewed to ensure
that they meet the hih standards expectad of referead papers ia prc‘essional journals or
formal Agency reports. '

Documents

10A Documents are used for the convenience of the sponsors or the analysts (a) to record
cubstantive work done in quick reaction studies, (b) to record the procesdings of
contersnces and mestings, (¢) to make available praliminary and tentative results of
analyses, (d) to record datz deveicped in the course of an ‘nvestigation, or (s) to forward
information that is sssentially unanailyzed and unevaluated. The review of IDA Docyments
is suited 1o their content and intended use. '

The work reported in this document was conducted under contract MDA 903 89 C 0003 for
the Department of Defense. The publication of this IDA document does not indicate
endorsement by the Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency.
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PREFACE

This paper constitutes a dzliverable to Task T-R2-597.01, "SDI Battle Management/
.C3 Studies," in accordance with Section 5.0--Schedule--of the task order dated 1 October
1990. The Institute for Defense Analyses (IDA) was tasked by the Strategic Defense
Initiative Organization (SDIO) to monitor, evaluate, and faciiitate the development of
tracking algorithmé. This paper undertakes to survey the state of the practice and the state
~ of the art in multiple senscr, multiple target tracking algorithms under deveiopment for or
applicable to ballistic missile defense in order to ascertain the status of activities in this
critical area.

The author would like to gratefully acknowledge the comments of Parney Albright
and Albert Perrella, and especiai!y' Oliver Drummond, Keh-Ping Dunn, and Gabriel
Frenkel. - ' '
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EXECUTIVE SUMMARY

Until recently, most of the Strategic Defense Initiative Organization's (SDIO)
tracking research and development focus has been on passive electrooptical sensors housed
on orbiting satellites or ground-based rockets launched into sub-orbital trajectcries. These
sensors, as part of a so-called Phase 1 defense system, were to detect, measure, track, and
discriminate large numbers of missile boosters and reentry vehicles (RVs) in a full-force
Soviet strategic attack gs they fly from boost phase through midcourse to early reentry, in
often noisy background clutter environments, closely interspersed during p. .tions of their
flights with many escorting decoys. Ground-based radars, which have always been a part
of SDIO terminal ballistic missile defense systems, have not been critical items ia Phase 1
tracking research and development. The emphasis instead has been on mas.tering\ the great

challenges of conducting surveillance with sensors that generate angles-only measurements

(also known as lines of sight or directions to the target) and intensity measurements during
boost and midcourse, to execute intercepts as early after launch as possible. Much of this
report is couched in terms of electrooptical sensors.

Recently, SDIO's mission has been expanded to emphasize theater ballistic missile
defense (TMD) and defense against accidental or unauthorized strategic missile attacks in a
mission known as the Global Protection Against Limited Strikes (GPALS). Radars are
critical sensors in TMD and GPALS. SDIO tracking research and development efforts now
need to be focused on two issues. One is on executing the ground-based TMD mission and
on extending the battle space of TMD systems by utilizing tracking infdrmation from
satellite-based systems. The other is the full strategic threat and a Phasé 1 defense.

This report addresses the latest developments and some of the critical issues
pertaining to tracking algorithm development for ballistic missile defense (BMD). For the
last several years, tracking has been recognized as one of the most compléx and challenging
tasks in BMD. During this time tracking algorithm development has been vigorously
pursued, with substantial results and continuing progress. Part I of this report is a survey
of the latest developments in this area. In spite of this progress, however, ﬁ1any critical

‘issues remain unresolved. Part II of this report is a discussion of those critical issues.
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The two parts are complcmentary.' Part I has the character of a survey and
describes the activities in different organizations and the results obtained in critical technical
areas. Part II is essentially a technical analysis of issues, problems, and candidate

approaches in selected key areas. The following major subjects are discussed in the two
parts: '

Part I: Survey of progress 'in some key tracking technologies--
describes developments in two areas pertaining to algorithm development and two related to
algorithm simulation and evaluation: '

+  Data Association

e Cluster Tracking

e Tracking Simulation

o  The Surveillance Testbed (STB).

' Part II: Some remaining probl'emé pertaining to the design,
utilization, and evaluaticn of tracking algorithms covers four topics:
| e Birth-to-Death Tracking .
e PBooster Tracking and Template Matching
¢ -Midcourse Track Initiation

» . Scoring Methods for Track Performance.

PART 1 SURVEY OF PROGRESS IN SOME KEY TRACKING
TECHNOLOGIES

In Part I, we undertake to provide a sense of where things stand regarding:

+ How many targets can be tracked, how well, and in what densmes and

- scenarios?

e In cumputer simulations to date, how many targets have tcen tracked, how

well, and in what densities and scenarios?
s By what criteria should computer simulations be judged?’

¢  Where is additional work required and what are the critical issues in algorithm
development, simulation, and evaluation?

Data. Association

Data association, oftea referred to as scan-to-scan correlation, is the decision
process of linking observations and tracks from the same target. Data association is very
S-2




challenging in a dense observation environment arising from clutter, false alarms, and
multiple targets and observations arising from unresolved closely spaced objects (CSOs).
An electrooptical sensor's ability to resolve closely spaced objects depends on the
properties of the optics and focal plane, the sensor signal processing, and the range and
viewing geometry to the targets. An observation from a group of unresolvable closely
spaced objects may be incistinguishable from the observation for a si'ngle object. A CSO
may also appear as a relatively large (compared to the signal from individual objects) clump
on the sensor’s detectors in what is referred to as an extended object.

Table S-1 shows the algorithms and key features for data association methods being
applied to BMD. High observation density is the single most defining characteristic of SDI

tracking problems, particularly for Phase 1 defense systems. It is the determinative factor

in the selection, implemen:ation, and complexity of data association algorithms.

Table S-1. Daia Assoclation Algorithms

Type A Feature Explanation

Assignment ' Coordination | Assignment can be performed on each track
independently of all other tracks (locally) or on all the
tracks simultaneously in a coordinated fashion (globaily).

Dimension Assignment can be performed on two data lists, such as
one set of tracks and the new frame of observations, or
more than two data lists such as one set of tracks and
multiple frames of data.

Number Assignment is usually unique, such as one observation
to one track, but can also be muttipie, such as multiple -
observations to one track or vice versa.

Probabilistic Data - Dimension Tracks are updated by an average over all feasily

Associatiot: associated observations from one or more frames of
Muttiple Hypotheses | Splitting Create additional tracks for each 1éasnbly associated
. observation. '

Observation- | Consider each observation in turn as originating
oriented from a new target or a feasibly associated existing track.

For the high observation densities of Phase 1 scenarios, whe:her good tracking
performance can be accomplished at affordable, or for that matter achievable, computational

| S-3




expense very much remains an open question. For TMD and GPALS data association will
be less ',challcnging. but, depending on the scenario, will not necessarily be no challenge.
Judgments on tracking performance for TM.) and GPALS, as for Phase 1, must await high
detail, high fidelity, credible simulations.

Cluster Tracking

" One innovative appx"oach to managing the high density threat, particularly during
early midcourse and Phase 1, is to forgo tracking individual objects and instead to track
closely spaced observations as a group or cluster in terms of the mean and extent. Clever
modeling was required to devise a filter to track the cluster extent. Cluster tracking raises
mary issues, not the least of which is that since mdmdual target tracks are ultimately what
is required, when is cluster tracking performed rather than individual target tracking and
vice versa? Also, when and how is the transition between cluster and individual object.
tracking accomplished? ‘

The Panels have defined a spectrum of group tracking approaches:
»  Group: Group properties alone are tracked.

 Group with Simple Individual: Simple individual object mformatwn is tracked
but the tracking of group properties is emphasized.

o Individual and Simple Group: Simple group information is tracked but .
individuai object tracking is emphasized. -

* ' Individual object tracking: Individual object tracking alone is performed.

The group tracking efforts with whicv'l we have some detailed information are

described in Table S-2. Much more work needs to be done to explore the chversuy of

algorithms and algorithm architectures and the critical issues associated with group
tracking. Work to datc has only begun to address the problems and possxbxlmcs

The Survelllance Testbed (STB) will provide an xmportant environment to
investigate these issues. There is one group trackmg algorithm in the initial set of test
articles being hosted on the STB. The status of group tracking remains for the most part as |
it was last year: In need of cxpenments and analyses that cxplore the diversity of group
tracking algorithms and algorithm architectures and the critical issues outlined above.
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Table S-2. Cluster Tracking Algorithms

Contractor Princi; al Developers .Brief Description
Hughes Aircraft and Oliver Drummond, Muttiple Sensor algorithm for tracking
General Dynamics Samuel Blackman cluster centroid and extent.

MiT/Lincoln Laboratory { C.B. Chang, Keh-Ping Dunn, | individual tracks for the observations

' ‘ Ming Tsai . defining the edge of a cluster to form
" | tracks for cluster members, which are
assumed to be moving in paralle! with

edges.
Nichols Research Pobert Osterheld, Develop individuat obj2ct tracks of
Corporation Lisa Brahm RVs and decoys deployed off a

\

common PBV through their closely
spaced phase.

Teledyne Brown Keith Maples Track cluster centroid and the
: parameters of an RV-decoy deploy-
ment model to develop individual -
"object tracks.

Trhcking _Simulations’

Observation ‘density is also the siﬁgle most defining characteristic in SDI tracking

~ simulations, particularly Phase 1 simulations. Tracking simulations measure computational |

performance (speed and memory) and tracking performance (estimation and association _
performance measures such as estimation accuracy, credibility, and reliabi'lity and track
purity). As a practical matter, many simulations emphasue one aspect over the other.
Simulations with larger and more dense threats are more often used to investigate
computational performance because the data association algorithm and tracking filter
design, implementation, and experimentation are compromised by insufficient computé-
tional resources. Those data association algorithms and tracking filters are selected more
for their computational thriftiness than for their tracking performance. High observation.
density indicates the level of ambmousness and complexity in the simulation, determines
the adequacy of computer resources, and must be considered in the measurement of the
level of difficulty and in the judgement of the guality of tracking performance

Good computauonal performance by itself is necessary but not sufficient. The
samc is true for estimation and association pcrformance Ten thousand objects have been
tracked in real-time but without much attention to estimation and association performance.
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In one simulation 460 midcourse objects in moderate Phase 1 density wcre tracked and in
another simulation 125 midcourse objects in heavy Phase 1 density were tracked--both with
good estimation performance, given crucial, unverified, and very optimistic assumptions
concermng the quality of boost-phase tracks handed over to the midcourse trackmg
algonthms

When ore considers tracking simulations four issues should be kept in mind:

e How challenging is the threat being tracked? Tracking. simulations can be
likened to diving and ice skating competitions, for instance, in the sense that
. performance must be evaluated in part by the level of difficulty of the effort.

*  What are the important assumptions and initial conditions? This is something

of an extension to assessing the level of chailenge of the threat. There are, '

several key concerns: To what extent are clutier and background effects
included and how are they modeled? What is assumed for sensor properties
such as resolution and accuracy? How is the sensor and signal processing
modeled? Is sensor tasking scripted in advance or performed on-line? Are
data misassociations permitted? Start-up conditions can grossly affect tracking
performance. For midcourse simulations the key issue concerns how
midcourse tracks are initiated: Does the simulation rely on tracks handed over
from boost phase and if so how good are those track hand-overs?

¢ What are the key algorithm details? It is important to know some detail of the

algorithms and algorithm architecture to apnreciate the context of the work.
o What are the scoring methods and measures of q?ecnveness’ How are tracks
associated with true targets for evaluation?

, Table S-3 lists some published results of tracking simulations. For reasons that
include competitiveness, not all simulation results are published. We list only those
simulations where we have some moderate sense of the answers to the four questions
above. | |

Sufveillance Testbed

Substantial progress has been made towards construction of a testbed to experiment

on and evaluate alternative surveillance algorlthms—-dctccuon, tracking, discrimination, and

sensor tasking--and to assess ballistic missile defense system-level surveillance

. performance. While the STB is being constructed to support both purposes, to the extent

that one takes precedence over the other, first priority must go to evaluation of surveillance

algorithms: an emphasis in favor of experimentation on algorithms increases the prospects

for.a testbed that successfully assists in the development of surveillance algorithms and
S-6




accurately assesses system-level surveillance performance. The progfam seems on track to
ensuring the creation of a facility that is sore}y needed by the SDI tracking community.

Table S-3. Midcourse and Birth-to-Death Tracking Simulations

Number and Density of .

Organization Thraat Objects Simulation Objective
Advanced Systems '460;'m:~derate density | Investigate tracking performance
Architectures ' ' .

6,260 Investigate computaiional performance

Alphatech

125 (1 booster)

Investigate tracking performance

Investigate performance of various

%0 . assignment algorithms
ESL ;160; moderate density | Investigate tracking and computational
: " |performance ,
GSTS 648 Investigate tlr‘acking periarmance
NTBIC Subsets of DTT-10f | Investigate compu:atioﬁal and tracking

Sandia Nétional Laboratories

various densities

10,000

performance

Investigate computational performance

The Surveillance Testbed is critical to SDIO. The STB will be the SDIO facility
where contractors can with a miniiium of modification run their own software in high
fidelity, high detail surveillance simulations to verify detection, tracking, discrimination,
and sensor taslcmg A contractor's algorithms can be tested by themselves on the STB as
well as in their role in a complete surveillance system by inserting them into a
complementary set of "house algorithms," algorithms maintained on the STB. With $DIO
approved threat scenarios, and SDIO supplied signal generation and sensor and signal
processing data that are the mputs to the surveillance algorithms, critical algomnm
experimentation and evaluation can take place'in a controlled environment and scored
accordmg to standardized mcthods, thereby facilitating performance comparisons. By
havmg the STB supply the inputs that drive high fidelity, high detail simulations, SDIO

saves the resources otherwise spent when each contractor develops their own extensive
simulation drivers.




The SDI Tracking Panels have played a critical role in the development of the STB.
Before the STB program was started the members of the Tracking Panels, representing
tracking algorithm designers from across government, FFP.DCs, contractors, and academe,
called for an algorithm testbed of this sort. A testbed on which experimentation could be
performed and high detail, high fidelity threat scenarios complete with sensor measurement
data‘could be produced and supplied to contractors for use in their own testbeds. During
the development of the STB, the Panels provided a peer review of the STB development
plans and supplied the input of the intended user community. The Panels deserve credit for
helping to shape the STB into a facility that should well serve SDIO and its contractor

commumty

The Panels identified and analyzed three different critical interface issues for the -

STB:
« Interfaces between mdmdual test articles and the STB test envircnment;

* Iaterface requirements stcmmmg from permitting feedback from trackmg
algorithm to sensor and signal processor, such as sensor tasking; and

¢ Interfaces between test articles.

It should be no surprise that hosting tracking algorithms on the STB will reruire
some software modiﬁcations Evcryonc can agree that it is imperative to kecp the
modlficauons to a minimum. The real issues are what sot of modifications, how many,
and by whom, the STB contractor or the tracking algorithm contractor? For the most part,
it must be the tracking algorithm developer who modifies their software since they are the
most knowledgeable of the code's contents. But their willingness to utilize the STB
: dcpe'nds on the scope of the modifications. The STB's government sponsors need to
appreciate that, everything else in order, the STB will fail or succeed based on the scope of
software changes required for hosting surveillance algorithms.

The Panels' recommendations to the STB are summarized as:

*  Development of flexible interfaces between STB test environment and tracking
algorithms must be emphasized early in order to best ensure that the STB
achieves its goal of providing a testbed for developing and evaluatmg
alternative surveillance algomhms

*  Limited emphasis should be given to early results of system-level performance
experiments with the "representative, baseline” algonthms used for testbed
integration validation;

' The STB must support a portable testbed facility.
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These testbed priorities should be clearly established:

»  Vigorous surveillance algorithm development must precede surveillance system
evaluation;

¢ Prepare early to accommodate the diversity of tracking algorithms and
algorithm architectures;

+ Interfaces between test environment and tracking algorithms must be flexible
and robust;
¢ Only after representative surveillance performance is appreciated and quantified
' by experiments on individual surveillance algorithms can system-level
surveillance performance be assessed accurately.

PART II. SOME REMAINING PROBLEMS PERTAINING TO THE
DESIGN, UTILIZATION, AND EVALUATION OF TRACKING
ALGORITHMS '

_Birth-to-Death Tracking

Ballistic missile defense birth-to-death tracking is the concept of maintaining
continuous tracks on targets from launch through to impact by fusing tracks across sensor
clements. Birth-to-death tracking schemes range from the grand to the températe. In the
grandest design of birth-to-death uacking, downstream narrow field-of-view sensors that
lack adequate independent search capability are enabled by pointing directions from
upstream sensors. Additionally, downstream sensors initialize tracks by relying entirely on’
upstream track hand-overs. Boost-phase tracks would be handed over to the post-boost
and r_nidcoui'se surveillance sensors for continuation: booster burnout position and velocity
would initialize the post-boost vehicle (PBV) track. Narrow field-of-view optical
midcourse sensors would be directed where to look for the PBV rather than ihdcpcﬁdently
searching. Ground-based radars would also be cucd where to look for midcourse and re-
entering objects to gain increased detéction ranges. As the PBV dispenses reentry vehicles
(RVs) and decoys, tracks for each would be established by spawning new tracks from the
continuing PBV track. Every object in the midcourse then could be traced back to its
origin, PBV and booster, and a track for each established essentially by continuation of
booster tracks. There would never be need during midcourse for the "cold start" track
initiation procedures of assembly of a sequence of measurements for initial orbit
determination data processing. All midcourse tracks would be initialized by "warm start”
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track initiation: hand-over of track data from upstream sensor elements and spawning new

tracks from existing tracks.

Track hand-bvers. from boost and midcourse to ground-based defense’ systems

could enable a number of enhancements in their performance and battle space, including

¢  Cues to the ground-based radars to concentrate their search inio narrow fields-
of-view to gain increased detection ranges;

»  Early commit of ground-based interceptors before their radars see the targets
but the radars would guide the interceptors as the targets come into view; and

»  Launch of ground-based interceptors gntirely 'indcpendent of their radars where
tracks from space-based sensors provide in-flight target updates that enable on-
board guidance algorithms to fly the interceptors into the close proximity of
their targets, where the interceptor's own on-board sensors would take over.

Birth-to-death tracking in its grandest design is logical and efficient. Such schemes

are ambitious, perhaps even feasible. But, as Table S-4 indicates, there are significant

liabilities in these approaches.

Table S-4. Key Features of Birth-to-Death Tracking

Advantages ; Liabilities

Omniscient accounting of threat objects Timely, seamless handover required
Enabling of narrow field-of-view sensors Susceptibility to catastrophic tailure

Facilitates track initiation

Reduce computational requirements

- Temperate birth-to-death tracking schemes with less than absolute reliance on
seamless link between sensors and sensor elements are directed towards:

«  Obviating cold start track initiation if upstream tracks are available;

Assisting rather than enabling relatively narrow ﬁeld-of-viqw Sensors;

¢ Assisting rathér than supplantiﬁg individual sensors and sensor elements.
Ultimately, it is a question of capability versus robustness against catastrophic

failure. Each sensor element 1nd each individual sensor must be capable of searching a
reasonable surveillance region and performing cold start track initiation to reduce
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vulnerability and to constitute a system that works in a world of communications delays '
and misdirections and the unexpected, but only if adequate capability is achievable or
affordable in individual sensors or sensor elements. '

Booster Tracking and Template Matching

Boost-phase frackiﬁg experience to date is limited. What can be performed well is
the tracking of a smail number of tai'gets across the foca! plane (focal plane tracking) of a
passive electrooptical sensor on-board geostationary satellites without explicitly modeling
the boosters' detailed three-dimensional dynamics or explicitly tracking the boosters' three-
‘dimensional trajectory. Historical averages and a priori assumptions for booster altitude
versus ground range flight profiles and intensity versus time profiles, known as templates,
are used to estimate launch locations, times, and azimuths, and to identify missile types.
- But with regard to using focal plane tracks and templates to predict future siates in post-
boost, midcourse, and reentry, the accuraéy requii'ed for BMD has not yet been
demorstrated. Brilliant Pebble booster tracking of a particular sort has been demonstrated
in limited simulations with low fidelity data and without clutter. Extensive simulations that
. demonstrate convincingly the tracking accuracy required for booster surveillance, good
weapon-to-target assignment, and good pebble guidance performance remain to be done.
In this report we review critical issues in, and methods of, booster trackmg and template
matching.

Booster tracking algorithms can:

¢  Estimate so-called tactical parameters, which are the missﬂe launch locations, |
times, azimuths, altitudes, and the degree to whxch the missile is lofted or
deprcssed from a nominal trajectory;

*  Assess the number and types of missiles launched in the raid;
*  Predict missile payload impact points on the earth;

*  Cue midcourse and terminal ballistic missile defense systems, both sensors and
interceptors; and -

¢ Provide fire control information for booster interception.

Tactical parameter estimation, raid assessment, and coarse impact point prediction
cons_timtc the traditional tactical warning and attack assessment (TW/AA) functions. More
precise impact point predictions and cues to midcourse and terminal sensors and
interceptors can enhance midcourse and terminal BMD performance and a'so enhance
TW/AA performance
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As shown in Table S-5, there are essentially three data processing or filtering
mcthods for tracking boosters

Table S-5. Booster Tracklng Filter Methods

‘Method Critical issues

Kalman Filter Modeling and integration of three-dimensional booster dynamics should give
best performance if viable, reliable, and credible. Need to compensate for
model errors, mcludmg maneuvers. ,

Line-of-sight Data association of Innes-of-snght in a dense observation environment.
triangulation Accuracy of velocity estimates is limited by the interpolation and numerical
' difterentiation procedures.

Least squares | Use of historical averages and a priori assumptions for altitude versus ground
(Template range flight profiles (templates) which also assumes trajectories for altitude
matching) are two dimensional. Convergence conditions and accuracy and the effects
y of clutter, talse alarms, and multiple targets.

Two general fundamcntal issues attend the use of historical avcrages and a priori
assumpnons on booster altitude versus ground range profiles and. assumcd two-
d1mcns10nal flight trajectories: '

e To which template should the sensor data be matchcd"
e  What are the reliability and credibility of relying on these assumptions?

There are essennally four sources of templates:

¢ The Master Target Model Book, pubhshcd by the Aerospace Corporanon,v_

contains temp'ates for altitude, ground range, intensity, mass, thrust, etc.
These profiles, typically one per missile type and mod, are from reconstructed
trajectories using data observed by nanonal tcchmcal means on systems that
have already flown. »

» The SDIO Threat generation community, apparently so far in an ad hoc

manner, has produced to specification a family of templates representing

lofting and depression for the future missile systems that typically populate
SDIO threat scenarios. It is important to empha51ze these are not based on
reconstructed trzjevtories.

+ Contractors with sophisticated booster rriodeling capabilities augmenting
whatever templates they are given from whatever source to create lofted and
depresscd templates.
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s  Averages over threat trajectories in a particular attack scenario on a particular -
threat tape. '

Clearly, use. of the last sort of template is suspéct. The immediate relationship of .
the booster trajectories in the threat with the templates that are then used to track them, the
very same trajectories that generated the templates, produces possibly invalid results and '
grossly mlsleadmg performance assessments. This source of templates muust be strongly
discouraged.

The Master Target Model Book cannot supply the templates for SDIO scenz;ﬁos set
in the future because of the mismatch between templates for missile systems that have been
observed, on the one hand, and SDIO threat scenarios that involve future missile systems

. that have yet to fly and for which no templates based on observed data can be constructed,

on the other. The community that produces the Model Book could be asked to produce
templates for future systems but this would represent a departure from their standard
methods, most importantly the reliance on observed data. SDIO, possibly by way of its
Threat Working Group, possibly in conjunction with the intelligence community, needs to
firmly control the development and promulgation of templates for use by SDIO contractors.
There currently is a gap of immense proportions between the intelligence community
providing templates on current inventory missiles and the free-for-all of assumptions on the
character and content of template data being made by SDIO contractors. If control is not
taken by SDIO, the validity of all tcmplatc matchmg results is at risk and could be .
considered suspect. -

The most important issue is the degree to which templates are identical to the
trajectories heing tracked. Should they match? If the altitude versus ground range
tempiates closely parallel the booster trajectories to be tracked then good template matching
performance should be expected. In a sense, close identity is akin to having assumed away
the problem All the uncertainty in the booster motion is removed and captured in the

' a priori data bases of templates. Unless we believe we can assume away the problem,
- templates, in gcneral should not be identical to the actual booster trajectories to be tracked.
. One exception rmght be third world missile forces whose unsophisticated guidance systems .

would keep the booster trajectories to simple flight profiles.

The bottom line is that reliance on a priori information may leave the algorithm
vulnerable to boosters that do not do the expccted, or the mean, or are of type and
circumstance outside the a priori information's domain of applicability. The consequence
may bc susceptibility to catastrophic failure. Balance is the key: use a priori information
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when necessary but in a manner that is as flexible as possible and that does not leave undue
susceptibility to catastrophic failure. ‘

Midcourse Track Initiation

Midcourse angles-only initial orbit determination is an old subject with a pedigree
that extends back almost two hundred years to Gauss and Laplace. The fundamental
midcourse tracking challenge to this time has been the large number and high density of
missile booster, RVs, decoys, and clutter to be tracked. As the severity of the threat
declines, as measured by density of objects seen by a sensor, from a defense against a full
Soviet attack, to a defense agains't accidental or unauthorized missile launches, to theater
missile defense, data association becomes less of a concern. Single satellite angles-only '
track initiation in the dense observanon environments of Phase 1, and pcrhaps GPALS,isa’
critical issue.

The issues in BMD cold start track initiation, both for the template matching in
~ boost-phase and for midcourse, are first the ability, in a dense observation environment, to
assemble a reasonably small number of credible time sequences of angles-only
measurements without being able to use models for the detailed models for the three-
dimensional target motion. The other issue is the reliability of the initial trajectory/orbit
determination algorithms and the accuracy, precision, and credibility of their initial state -
estimates and estimation errors.’ Low precision state estimation errors will lead to greatly
complicated data associatior problems for track maintenance in dense observation
environments. The critical issue is to gain high enough precision estimation errors to
‘mitigate data association problems. We know of no simulations where these issues are
thomughly examined.

Scoring Methods for Tracking Performaﬁce

Ultimately, the performance of iracking 'algorithms is judged by the success, or’

failure, of the mission they support. But it is also important to evaluate tracking algorithms

.in computer simulations to diagnose and evaluate their performance. Evaluation of tracking
performance is straightforward in an environment of few, widely spaced targets and no

false alarms or clutter. In this sparse environment, a track is consistently updated with

measurements from the same target. The track, or state estimate, is then associated and

compared with the true state of the target, which is obvious as 1dentxfied by the one source

of the measurements. '
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Performance evaluation is more complex in a dense environment of:
* False alarms; '

*  Clutter;

e Multiple targets;

o Individual observations arising from unresolved closely spaced objects
(CSOs). '

'

With misassociations and unresolved CSOs, the source of the measurements in a -
track will not be a clear indication of a single target, thus confusing which track is to be
compared with the rrue state of a target. Furthermore, in a dense envircnment, there may
be

e  Missed tracks: targets without tracks;
Redundant tracks: more thaa one track for one target;

»  Spurious tracks: tracks for no targets whatsoever.

Scoring tracking algorithm estimation and association performance has been a major -
issue in SDf simulations. Some algorithms may generate many “extra" tracks, such as in
. multiple hypothesis tracking, but the track purity and state estimation accuracy of the N best
are better than the N tracks of algorithms that do not knowingly generate "extra" tracks,
such as locél nearest neighbor. Insofar as track purity and state estimation are concerned,
the former is to be preferred, whereas the latter may be preferred from the standpoint of
computational and memory costs and size, weight, and power of on-board processars.

These methods were initially developed by individuals and further developed and
adapted by the members of the SDI Panels on Tracking. It is part of an ongoing process
and is not to be considersd as the Jast word on the subject. '

Track purity over a time interval refers to the degree to which a track’s T
measurements over that time originate from a particular target. In single target trécking
without false alarms and clutter, track purity is ensured and the association of track-to-truth
unambiguous. Multiple target tracking typically involves many impure tracks and,
therefore, ambiguous track-to-truth assdciaﬁon. 'Ne will define scoring criteria for track
purity in dense target environments. In principle, track purity can be usad to determine
track-to-truth associatiors but in dense target environments and for some MTT algorithms
the corcept of track purity loses some of its meaning. |
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We suggest a method for track-to-truth association based on a global nearest
neighbor assignment approach. At each of the designated evaluation times, a global nearest
neighbor assignment algorithm is executed to uniquely associate tracks and targets. After
tracks and truth have been asscciated, we can evaluate performance criteria for the two
functions of a multiple target tracking algorithm:

1. Data association. This function selects the observations to be used by the track
filter to update the state estimate. Its measures of effectiveness will be track
purity and misassociation. They measure the consistency with which a track is
updated with measurements from a single target or a set of targets,
.respectively; and -

2. Estimation. This function transforms sensor measurements into estimates of
the target's state, usually the target's trajectory described by position, velocity,
acceleration, etc, and the target's state estimation error covariance. The
distance between the state estimate and the true state and the credibility of the
filter calculated covariance matrix measure the performance of the tracking
filter, which is affected by data misassociation and other errors.

The goal of the detailed scoring methods for tracking algorithm estimation and
association performance is to provide a guide or standard with which all tracking '
algorithms can be evaluated. This rcpbrt presents formulas a.:d criteria for many of the
major functions in tracking adapted by the Panels. '
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1. INTRODUCTION

This report undertakes to characterize the state of the practice and the state of the art
of multiple sensor, multiple target tracking algerithms in ballistic missile defense (BMD).
“Until recently, most of the Strategic Defense Initiative Organization's (SDIO) tracking
research and development focus has been on passive electrooptical sensors housed on
orbiting satellites or ground-based rockets launched into sub-orbital trajectories. These -
sensors, as part of a so-called Phase 1 defense system, were to detect, measure, track, and
discriminate large numbers of missile boosters and reentry vehicles (RVs) in a full force
Soviet strategic attack as they fly from boost phase through midcourse to early reentry, in
often noisy background clutter environments, closely interspersed during portions of their
flights with many escorting decoys. For simplicity, we will refer to both of these basing
modes as satellite-based, in keeping with the sensor's location while tracking. '

Ground-based radars, which have always been a part of SDIO terminal ballistic
, missile defense systems, have not been critical items in Phase 1 tracking research and
development. The emphasis instead has been on mastenng the great challenges of
-conducting surveillance with sensors that generate angles-only measurements (also known
as lines-of-sight or directions 1o the target) and intensity measurements during boost and
midcourse, to execute intercepts as early after launch as possible. Recently, SDIO's
mission has been expanded to emphasize theater ballistic missile defense (TMD)' and
defense against accidental or unauthorized strategic missile attacks in a mission known as
_the Global Protection Against Limited Strikes (GPALS). Radars are critical sensors in
TMD and GPALS. SDIO tracking resear"l* and development efforts now need tc be
focused on two issues. One is on executing the ground-based TMD mission and on
extending the battle space of TMD systems by utilizing tracking information from satelhte- :
based systems. The other is the full strateglc threat and a Phase 1 defense.. |

1.1 INTRODUCTION TO TRACKING

A track is an estimate, based on sensor measurements, of the position and velocity
and sometimes acceleration a.1d key parameters that describe the target's trajectory and
properties, such as mass, temperature, etc. ‘The position, velocity, acceleration, and any
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key parameters are collectively referred to as the target's state. Unless otherwise specified, -

we will usually understand target state to refer to a target's position, velocity, and
acceleration, that is, trajectory. A 'track, then, is an estimate of the target's current and
future state derived from sensor measurements of it. :

A tracking algonthm is a sequence of loglcal and mathemancal procedures for:.
(1) associating sensor measurement data from the same targst across multiple frames of
data and across multiple satellites or associating tracks of the same target across multiple
satellites; and (2) processing that data into estimates of current and future target position,
velocity, and acceleration. Association and estimation are interrelated procedures usually
based on detailed physics models for the forces governing the target's trajectory and

'detailed models for the relationship between sensor measurements and the target's state.

Sensor measurement data are the inputs to a tracking algorithm; estimates of the target
trajectory are the outputs. The estimation algorithm establishes criteria by which the
association algonthm chooses subsequent measurements for subsequent data processing by
the estimation algorithm.

The two most important data processing algorithms that transform sensor
measurement data into trajectory estimates are Kalman filters and least square filters.
A Kalman filter is an algorithm that, based on models for target dynamics and sensor
measurements, generates a state estimate and state esnmauon error covariance at the current
time usmg all the sensor measurement data to that t'me. The estimate and its error are
updated cach time subsequent measurement data become available, in what is referred to as
recursive or sequential processing. The filter also predicts future values. for the state
estimate and state estimation error covariance without further data. Kalman filters are an
optimum method for processing the data according to the statistical ms asure of optimality
known as minimum mean square error. In contrast, the least squares filter, in what is
referred to as batch processing, simultaneously processes an assembly (time sequence) of
data to produce a state estimate and estimation error covariance at a time during the
observation interval. The least squares filter is optimum according to the criterion of
minimizing the squared errors between the sensor measurement data and a model for the
target motion that produced that data. - ‘

A passive electrooptical obsefvation measures azimuth and elevation and cannot
measure range to a target. Aziruth and elevation define a line-of-sight vector that describes
the direction to a target from the sensor. A target's position with respect to the sensor is
specified by the product of range and line-of-sight vector. |

-
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In passive electrooptical sensors, tracks are either focal plane tracks or full state
~ tracks. A focal plane track typically uses a Kalman filter to estimate a target's trajectory
across the focal plane without explicitly modeling its dynamics in three dimensions. The
sensor's azimuth and clevation sensor measurement datg’are used to estimate the current
and future azimuth and elevation position, velocity, and acceleration. Range and its
derivatives are neither measured nor estimated.

In single satellite passive electrooptical tracking algorithm approaches, focal plane :
" tracking would be followed by an initial trajectory/orbit determination algorithm. This is
often, but not always, a least squares filter to batch process the entire time sequence of
azimuth-elevation measurements in a focal plane track. In general, initial trajectory/orbit
determination algorithms transform thé essentially two-dimensional angles-only
information of a focal plane track (azimuth and elevation) into initial three-dimensional
information on the full state, which can initialize a full state Kalman filter. Based on
models describing a target's three-dimensional dynamics and the sensor measurement
process, the full state Kalman filter maintains estimates for three-dimensional position,
velocity, and acceleration, alternatively updating estimates at the time each new sensor
measurement data become available with predicting estimates ahead to future times.

If another satellite is available and observes the same surveillance region, its
azimuth-elevation measurement data can be associated and combined with the first
satellite's angles-only meusurement data to produce range measurements to the tafgets by
triangulation. One satellite's focal plane tracks can similarly be associated and combined
with those of anot‘-er satellite to produce range data. Stereo data processing would then
’ fOx.JW o

Stereo data rrocessing algorithms for fused line-of-sight data come in two general
types. One type implements an initial trajectory/orbit determinatior: algorithm, different in
detail from the angles-cnly algorithms in the single satellite case, but with the same goal: o
determine the three-dimensjonal trajectory informatibn not directly available in the
measurement data. namely, three-dimensional velocity and acceleration. Three-dimensional
tracks would then be maintained by a Kalman filter, either in place of the 1nd1v1dual
satellite’s, focal plane tracks or in addition to them.

Tae other type of stereo data processing algorithm obviates dynamical modeling
_ requiremen s by assembling a time sequence of three-dimensional target posmons from
contiruaily fused focal plane tracks maintained by the stereo partner satellites. Three-
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dimensional target velocity at each time is computed by interpolation and numerical
differentiation of the positions.

A major activity in all tracking algorithms, single satellite as well as multiple
satellite, is the association of a single frame of observation data to tracks. Often the first
step in association is to eliminate unlikely observation-track pairings in a process known as
gating. ' A gate is a region in *he sensor's field of view determined by the Kalman filter
_where the subscqueht measurement originating with a target being tracked is likely to fall.
In order to be associated with a particular track, it is necessafy but not sufficient for an

_observation to fall within the gate for that track. Observations from other targets, false
alarms, or clutter may also fall within the gate or the target may not have been detected
within the gate. When there is more than one observation in a gate or an observation
simultaneously falls in more than one gate, there is uncertain association of observations

 and tracks. ‘ '

In general, the association problem is one of the most computationally intensive and
critical aspects of tracking, particularly in dense observation enviroriments. Incorrect
observation-to-track association can lead to: poor track performance, that is, a large
~ difference between estimated and true target trajectories; loss of track as the filter follows an
incorrect sequence of observations; and tracking errors far worse in reality than those
predicted by the Kalman filter. High tracking precision mitigates the association problem
~ by generating smaller gatcs.' Errors incurred during multiple satellite observation and focal
plane track association also have very serious effects on performance. These associations
are greatly complicated by multiple intersectionis of lmes of sight (ghostmg) or non-
intersecting lines of sxght

Data association is the most critical challen gé in Phase 1 in the dense observation
environment arising from clutter, false alarms, and multiple targets. With declining threat
severity, from Phase 1 to GPALS to TMD, data association becomes less of a coricem in
midcourse but by no means does it become of no concern. Data association almost
certainly remains a critical issue in boost-phase tracking.

Filter design, modeling, and numerical implementation in order to acﬁieve good
performance, credibility, and reliabifity, when challenged by complex target dynamics, by
difficult data association, or by limited sensor information are critical issues that span
Phase 1, GPALS, and TMD. For single satellite tracking of boosters in powered flight,
clever modeling and design are necessary to track these very dynamic targets in a probably
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dense observation environment arising from clutter and false alarms using the limited
sensor information afforded by angles-only observations.

One innovative approach to managing thc high dcnsny Phase 1 threat, pamcularly

during early midcourse, is to forgo tracking individual objects and instead to track closely

| spaced observations as a group or cluster in terms of the cluster mean and extent. Clever

modeling was required to devise a filter to track the cluster extent. Cluster tracking raises

many issues, not the least of which is that since individual target tracks are ultimately what

- is required, when is cluster tracking performed rather than indiv: .1 target tracking and

vice versa? Alzo, when and how is the transition bet*. -7 clu... .'~.d individual object
trackmg acoomphshed" |

1.2 INTRODUCTION TO TEHIS REPORT
. This report is divided into tvm pan'., with Part § 2 surv. | for program ‘managers
and defense decision makers to provide them & sense of where thmgs stand rcgardmg

* How many targets can be tracked. how well, and i1 what densities and
-scenarios?

* In computer simulations to date, how mary targets thC been tracked, how
well, and in what densities and scenarios?

By what criteria should computer simulations be judged‘?
* , Where is additional work required and what are the critical issues in algorithm
development, simulation, and evaluation?
Towards this end, Part I consists of a survey, including the state of several critical
issues in tracking algonthm development: ‘
* e Data Association
'« Cluster Trackin g
* . Tracking Simulation :
e The Surveillance Testbed (STB).

‘Tracking simulations measure computational performance (speed and memory) and
tracking performance (estimation and association performance measures such as estimation
accuracy, credibility, and reliability and track purity). Asa pracucm matter, many
~ simulations emphasize one aspect over the other. Simulations with larger and more dense

threats are more often used to investigate: computational performance because the data
.association algorithm and tracking filter design, implementation, and experimentation are
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compromised by insufficient computational resources. Those data association algorithms
and tracking filters are selected more for their computational thriftiness then for their
tracking performance. High observation density indicates the level of ambitiousness and
complexity in the simulation, determines the adequacy of computer resources, and must be

" considered in the measurement of thc level of difficulty and in the judgement o‘ the quality

of tracking performance.

The Surveillance Testbed is crmcal to SDIO. The STB will be the SDIO facﬂlty
where contractors can with a minimum of modification. run their own software in high

fidelity, high detail surveillance simulations to verify detection, tracking, discrimination,

and sensor tasking. A contractor's algorithms can be tested by themselves on the STB as
well as'in their role in a complete surveillance system by inserting them into a
complementary set of "house algorithms," algorithms maintained on the STB. With SDIO

' approved threat scenarios, and SDIO supplied signal generation and sensor and signal

processing data that are the inputs to the surveillance algorithms, critical algorithm
experimentation and evaluation can take place in a controlled environment and scored
according to standardized methods, thereby facilitating performance comparisons. By

* having the STB supply the inputs that drive high-fidelity, high-detail simuiations, SDIO
saves the resources otherwise spent when each contractor develops their own extensive
. simulation drivers. ‘

The SDI Tracking Panels have played a critical role in the devclopmcnt of the STB.
Before the STB program was started the members of the Tracking Panels, representing

tracking algorithm designers from across government, FFRDCs, contractors, and academe,

called for an algorithm testbed of this sort. A testbed on which experimentation could be
performed and high-detail, high-fidelity threat scerarios complete with sensor measurement
data could be produced and supplied to contractors for use in their own testbeds. During

‘the development of the STB, the Panels provided a peer review of the STB development

plans and supplied the input of the intended user community. The Panels deserve credit for

- helping to shape the STB into a facility that shpuld well serve SDIO and its contractor

community.
Part I of this report contains discussions of some remaining problems penammg to
the design and utilization of tracking algonthms

"« Birth-to-Death Trackin g
*  Booster Tracking and Template Matching

1-6




¢  Midcourse Track Initiation

. Scormg Methods for Track Performance.

In a fully integrated ballistic missile defense survexllancc system, tracks would be
disseminated and fused throughout the various battle managers and sensor elements: boost
phase surveillance sensors, space-based and ground-based space surveillance.'scnsors, and
terminal phase sensors. Ballistic missile defense birth-to-death tracking is the concept of
" maintaining continuous tracks on targets from launch through to impact by fusing tracks
across sensor elements. Birth-to-death tracking schemes range from the grand to the
- temperate.

In the grandest design of birth-to-death tracking, downstream narrow field-of-view
- sensors that lack adequate independent search capability are enabled by pointing directions
from upstream sensors. Additiodally, downstream sensors initialize tracks by relying
entirely on upstream track hand-overs. Boost-phase tracks would be handed over to the
post-boost and midcourse surveillance sensors for con‘tinuation:v booster burnout position
and velocity would initialize. the post-boost vehicle (PBV) track. Narrow field-of-view
optical midcourse sensors would be directed where to look for the PBV rather than
- independently searching. Ground-based radars would aiso be b_ucd where to look for
midcourse and re-entering objecis to gain increased detection ranges. As the PBV
dispenses reentry vehicles (RVs) and decoys, tracks for each would be established by
spawning new tracks from the continuing PBV track. Every object in the midcourse then
could be traced back to its origin, PBV and booster, and a track for each established
essentially by continuation of booster tracks. There would never be need during midcourse
for the "cold start” track initiation procedures of assembly of a sequence of measurements
for initial orbit determination data processing. All midcourse tracks would be initialized by
"warm start" track initiation: hand-over of track data from upstream sensor elcments and
spawning new tracks from existing tracks. '

Birth-to-death tracking in its grandest design is logical and efficient. It possesses .
- the virtues of omniscient accounting of threat objects, enabling of relatively inexpensive
narrow field-of-view optical sensors, and avoidance of the immense computational expense
- and comphcauon of cold start.track initiation. But it counts on the existence of a seamless
link across sensor elements, in which upstream track information is available exactly when
and where it is needed. Such a link is ambitious, perhaps even feasible. But a surveillance
system that is entirely reliant upon it is critically susceptible to catastrophic failure.
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Temperate birth-to-death tracking schemes cue downstream sensors to assist (rather
than enable) relatively narrow field-of-view optical sensors, to increase the battle space of
ground-based BMD sy;temé, and to avoid cold start track initiation but only if and when
upstream track hand-overs are available. Hand-over tracks are not considered to supplant
an independent operational capability for each individual sensor or individual sensor

element.

Ultimately, it is a question of capability versus robustness against catastrophic
failure. Eaclh.sensor element and each individual sensor must be capable of searching a
reasonable surveillance region and performing cold start track initiation to reduce
‘vulnerability and to constitute a system that works in a world of communications delays
and misdirections and the unexpected. But, only if adequate capability is achievable or
affordable in individpal sensors or sensor elements. |

'Boost-phase tracking experience to date is limited. What can be performed well is
the tracking of a small number of targets across the focal plane (focal plane tracking) of a
passive eiectrooptical sensor on-board geostationary satellitzs without explicitly modeling
the boosters’ detailed three-dimensional dynamics or expliéitly tracking the boosters' three-
dimensional trajectory. Historical averages and a priori assumptions for booster altitude
versus ground range flight profiles and intensity versus time profiles, known as templates,
are used to estimate launch locations, times, and azimuths, and to identify missile types.
But with regards to using focal plane tracks and templates to predict future states in post-
boost, midcourse, and reentry, the accﬁracy required foo BMD has not yet been
demonstrated. Brilliant Pebble booster tracking of a particular sort has been demonstrated
in limited simulations with low fidelity data and without clutter. Extensive simnlations that
demonstrate convincingly the tracking accuracy required for booster surveillance, good

weapon-to-target assignmen:, and good pebble guidance performance remain to be done. -

In this report we review critical issues in, and methods of, booster tracking and template
matching. '

Single satellite angles-only track initiation in the dense observation environments of
Phase 1, and perhaps GPALS, is a critical issue. The issues in ballistic missile defense are
first the abiiity, in a dense observation environment, to assemble a reasonably small
number of credible ume sequences of angles-only measurements without being able to use
. models for the detailed three-dimensional motion of the targets. The other issue is the
reliability of the initial trajectory/orbit determination algorithms and the accuracy, precision,
and credibility of their initial state estimates and estimation errors. Low precision state
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estimation errors will lead to greatly complicated data association problems for track
maintenance in dense observation environments. The critical issue is to gain high enough
prccision‘e&timation errors to mitigate data association problems. We know of no
simulations where these issues are thoroughly examined. In this report we discuss in detail
approaches to track initiation, booster initial traJcctory determination, and to mldcourse |

initial orbit determination.

Ultimately, the performance of tracking algorithms is judged by the success, or
failure, of the mission they support. The destruction of a target by an interceptor guided, in
part, by tracking information provides one vivid, obvious measure of success. But, what
if the interceptor missed? Did the tracking algorithm perform poorly, or the guidance
algorithm, or the sensor and signal processing, or the rocket motor? o

Scoring tracking algorithm estimation and association performance has also been a
major issue in SDI sjmulétions. Succinctly, in a dense observation environment, where the
track is made ﬁp of observations from many targets, it is non-trivial to decide on the
association between tracks and with the true target states that produced those observations.
In this report, a method is proposed to associate tracks with true target states. This method
was first developed by a member of the Tracking Panels and augmented and adapted by the
Panels. Aftér making the association of track to truth, there remains the issue of standard
scoring computations and criteria. We derive detailed scoring methods for tracking

algorithm estimation and association performance. The goal is to provide a guide or
atandard with which all tracking algonthms can be evaluated. This report presents
formulas and criteria for many of the major functions in trackmg adapted by the Panels.




PART I

SURVEY OF PROGRESS IN SOME KEY
TRACKING TECHNOLOGIES
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2. SURVEY OF DATA ASSOCIATION ALGORITHMS

Data association, also referred to as data correlation, is the decision process of
linking observations and tracks from the same target. We will use the term data association
for what is often referred to as scan-to-scan correlation. In general, the association could
be sensor observations to sensor observations, either near simultaneous observations from
multiple sensors or a time sequence of observations from a single sensor. The association
could be tracks to tracks from muitiple sensors. And the association could also be
observations to tracks for one sensor operating independently. Scan-to-scan may imply
that the problem is restricted to Hnldng observations with observations.

While association and correlation are synonymous the latter also refers to a specific
mathcmaucal quantity or operation. It is useful to point out that the mathemancal
" correlation operator plays no role in establishing links in multiple sensor, multiple target '
tracking. Finally, to be consistent with strict usage, we will use the term frame instead.of
scan where a frame is defined as one data collection survey of the surveillance region.
With this definition frame is independent of whether the sensor surveils by mechanically
sweeping the field of view with detectors or surveils electronically with staring detectors.

Data association is very challenging in a dense observation environment arising
from clutter, false alarms, and multiple targets and observations arising from unresolved
closely spaced ochcts (CSOs).” The sensor's ability to resolve closely spaced objects
} depends on the properties of the optics and focal plane, the sensor signzl processing, and

the range and viewing geometry to the targets. An observation from a group of
" unresolvable closely spaced objects (CSOs) may appear identical to the observation for a
single object. A CSO may also appear as a relatively large (compared to the signal from
individual objects) clump on the sensor's detectors in what is referred to as an extended
object. '

High observation density is the single most defining characteristic of SDI tracking
problems, particularly for Phase 1 defense systems. It is the determinitive factor in the
sclecnon, implementation, and complexity of data association algorithms. For Phase 1
defense whether good tracking performance can be. accomplished at affordable, or for that
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matter achievable, computational expense remains an open question. For TMD and
GPALS data association will be less challenging, but, depending on the scenario, will not
necessarily be no challenge.

This chapter, an abbreviated, updated version of similar material in last year's
survey, provides a review of the three classes of data association algorithms: assignment,
probability data association, and multiple hypothesis.! The distinguishing characteristic .
separating these approaches is the manner in which data association decisions are made.
We will also briefly mention some excmng advanced concepts: Fuzzy Sets and Conditional
Event Algebras. o

2.1 DATA ASSOCIATION ALGORITHMS

The fundamental inultiple sensor, multiple target data association dilemma is the
_decision on the origin of observations and tracks in the association of observations to
observations, observati .as to tracks, or tracks to tracks. For instance, an observation
could be from the individual target of interest, from other targcts from an unresolved CSO,
or clutter or false alarm.

There are three fundamental classes of déta association algoﬁthms; Assignment
~ algorithms make a definitive decision on the origin of the data at each decision time. No
. alternative hypotheses are carried into the future to await the assistance of new daté in
sorting out the truth. Instead of deciding which particular datum to associate, the
probabi!istic data association (PDA) algorithms average over all feasible associations.
Multiple hypotheses-algorithms defer a decision on the origin of the data. All viable
alternatives are retained as distinct possibilitics until later information decides the correct
data association. For each class, there are several key concepts, which are summarized in
- Table S-1 and explained below

Assxgnment and mulnple hypotheses algorithms have received the most
consideration in BMD. In general, assignment data association algorithms should be
computationally affordable but may not provide the necessary tracking perfonnance
Multiple hypothesis algorithms, on the other hand, should provide supenor pcrfonnance
but their computanonal requirements may not be affordable.

1 For a more in-depth review see Survey of Strategic Defense Initiative Algomhms Gabnel l‘renkel and
Barry Fridling, Institute for Defense Analyses, IDA Paper P-2284, November 1989,
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Table 2-1. Data Association Algorithms

Type , Feature Expianation

Assignment Coordination | Assignment can be performed on each track
independently of all other tracks (locally) or on all the
tracks simultaneously in a coordinated fashion (globally).

Dimension Assignment can be performed on two data lists, such as
‘ one set of tracks and the new frame of observaticns, or
more than two data lists such as one set of tracks anc!
nuitiple frames of data.

Number Assignment is usually unique, such as one observation
to one track, but can also be multiple, such as muttiple
observations to one track or vice versa.

Probabilistic Data Dimension Tracks are updated by an average over all feasibly
Association associated observations from one or more frames of
, - data. : -
Multiple Hypotheses | Splitting . Create additional tracks for each feasibly associated
. observation. .

Observation- | Consider each observation in turn as originating
oriented from a new target or a feasibly associated existing track.

2.1.1 ASSIGNMENT ALGORITHMS

Nearest neighbor assignment algorithms associate the closest data as calculated by

some distance function. For instance, a'track would be assigned the nearest observation as
calculated by the distance from the track to the measurement.

One approach to single sensor multiple target tracking is to implement a nearest
neighbor algorithm for each track independently of all other tracks. This is referred to as
uncoordinated or local nearest neighbor. A track would then decide whether to update with
an observation independent of how another track updates regardiess of competing claims
for the observation. ' ' '

This is ursatisfactory for the reason that associations over multiple targets are
interdependent: the association of an observation that simultaneously lands within the gates
of more than one track with a particular track denies that observation to the remaining

contending tracks. Unique associations are often required in order to ensure statistical
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independence of the tracks, which considerably simplifies the tracking algorithm
mathematics.

Nearest ncighbor assignment algorithms should be executed in a coordinated or
global manner as follows. - A cost matrix is defined for all possible observation to track
associations, including that the observations are from a new source (target, clutter, or false
signal), and for all track to observation associations, including the case that the correct track
observation is not feasible or was not detected. The matrix entries or scores are the
probabilities of the associations or their logarithms. In Kalman filter tracking, these are the
exponential of minus one-half of the normalized distance hetween the measurement and
track in the association pair. (Other factors can be included in the scores, such as the
probability of detection, the probability of finding the measurement associated with the
target within the gate, the probability that the observation is from a new source, and the
probability of choosing no observation for association with the track.) An algorithm, such
as the Munkres algorithm, is executed to assign observations to tracks in a coordinated
fashion by maximizing the sum of matrix entries subject to the constraints that no track is
updated by more than one observation and one observation is not assigned to more than
one track. Maximizing the entries minimizes the total distance between measurements and
tracks. The result of such an algorithm is a unique pairing of tracks to observations.

Assignment algorithms usually associate i'tems on two data sets, for instance, a set
of observations with a set of tracks. They can also associate two sets of observations or
" two sets of tracks. Assignment algorithms for two data sets are often described as two-
dimensional.

Research and development of assighment algorithms is advancing rapidly. A recent
report? described an optimal two-dimensional assignment algorithm thai is claimed to be
substantially faster than even the fastest version of the sparse Munkres algorithm. |

Assignment algorithms have been developed that can associate data among more
than two data sets, for instance linking several frames worth of ob‘servations to tracks. In
this manner, multiple dimension assignment algorithms are generating multiple hypotheses
in the sense that more than one viable alternative is retained over a number of scans, A
hard assignment, that is, decision, is then made after some fixed interval.

2 "Comparison of 2-D Assignment Algorithms for Sparse, Rectanguiur, Floating Point, Cost WMws,“
OE. Drpmmond, D.A. Castanon, and M.S. Bellovin, in the Journal of the SDI Panels on Tracking, the '
mmmmm Issue No. 4/1990, pp. 4-81 10 4-97,
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Assignment algorithms are also being developed to make non-unique associations,
assigning one track to two observations or two tracks to one observation. These are
referred to as mulnple assignment algorithms.

Alphatech Corporation has contributed greatly to the dcvclopmcnt of assignment
algorithms, both multi-dimensional and multiple assignment. Alphatech, in part under
work funded by the Algorithr Architecture Program of the U.S. Army Strategic Defense

' Command, has explored the performance of many innovative, advanced assignment

algorithms on various computer architectures. This work is of great importance. .

2.1.2 Probabilistic Data Association Algorithms

Probabilistic data association (PDA) applies to a single track and is strictly a method
for handling the problem of multiple feasible observations with an established track. The
fundamental ideas are to average over the latest set of all feasible observations and to uuhze
the association probabllmes of the observations to the track.

In the PDA, each feasibly associated observation is considered as originating with
the target. Also the case that the observation originating with the target is not detected or is
not considered feasible is given consideration. An association hypothesis is constructed

. consisting of associating one observation (or none) to the track and considering all others

as statistically independent clutter or false alarms.

The PDA procedure is first to multif)ly the prdbability of each association
hypothesis with the updated state estimate that assumes that hypothesis is true. Then a
composite PDA state estimate is formed as the sum over each of these products. This
forms a weighted average of the state cstlmatcs for each feasible data assoclatxon
hypothesis. '

The joint probabilistic data association (JPDA) algorithm extends the PDA to
multiple targets by computing the association probabilities jointly across tracks rather than
for cach individual track. The state estimate is calculated as before as an average over the
state estimates for each association hypotheses welghtcd by the probability for that
hypothesis.

The four principal distinguishing characteristics of the PDA approaches are the
assignment of many observations to one track, the exploitation of association probabilities,
the calculation of state estimates as averages over association hypotheses, and a lack of

organic track initiation logic.
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The association probat ilities are calculated with Bayes Theorem from Probability
Theory. For this reason, PDA algorithms are one member of a class of tracking
approaches referred to as Bayesian Tracking Algorithms. An Optimal Bayesian Tracking
algorithm would extend the association hypotheses over many frames rather than just the

most recent.

Bar-Shalom and Fortmann3 have extended the PDA single scan algorithm to an
optimal Bayesian algorithm. Consider a time sequence of observations, one observation
from each frame from the initial to the present time. Such a sequence forms one possible
target history, that is, one possible track. Consider all ‘possible such sequences. The set of
all possible associations at the current scan can be decomposed into tracks at the previous
frame associated with some observation from the current frame. o

An association probability for each observation sequehce,' that is, a probability for
each track, can be calculated conditioned on the entire set of observations. As in PDA, the.
conditional probability for each hypothesis multiplied by the state estimate that assumes that
h‘ypothesié is true is summed over all possible hypotheses. Thus, the updated state
estimate for a track is an average over the diffcrent possible associatior: hypotheses.

Since optimal Beyesian algorithms associate over all scans, not just the most recent,
the computational expense is prohibitive. A suboptimal approach looks back N frames,

_ referred to as N-backscan, rather than all the way to the initial frame. The original PDA is

the zero-backscan suboptimal version.

2.1.3 Multiple Hypotheses Algo'rithms

An intuitive approach to managing multiple feasible observation to track
associations is to split the original track into many tracks, one for each feasibly associated
observation. This process is known as track splitting. Each track is updated with the
associated observation and carried forward to the next scan in the standard fashion. In this
manner, dlfﬁcult association decisions are deferred until more information becomes
avzilable.. ‘

A track splitting algorithm has two limitations. First, it has no organic track
initiation logic: Observations not feasibly associated with existing tracks are not addressed.
The second and most significant limitation of the track splitting algorithm is that

3. Yaakov Bar-Shalom and Thomas E. Fortmann Trackmg and Data Assocmrwn, Academic Press, Inc.,
Orlando, Florida (1988)
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observation association with multiple tracks is performed in an uncoordinated manner.
There is no conflict resolution logic that manages the problem of one observation that may
be feasibly acsociated with multiple tracks.

Deferring difficult data association decisions is archetypical of multiple hypotheses
_algorithms. In contradistinction to track splitting, other multiple hypotheses algorithms
tend to make use of association probabilities like those in the PDA algorithms.

Reid's# multiple hypothesis algorithm remedies the absence of organic track
initiation logic by generating observation-oriented hypotheses. A track-oriented hypothesis |
is where every observation is considered for association with each track from the previous
scan. No observatior. is considered for association with a track that did not exist on the
previous scan, that is, a new target. This is the reason for the absence of organic track
initation logic. In observation-oriented hypotheses, each observation is considered as .
clutter or a falsé alarm, as a feasible continuation of a previous track, or as a new target.

Consider the hypotheses generatéd on the previous frame and the first observation
of the new frame. Generate a new Hypothesis for each feasible association of this
observation: as clutter or a false alarm, as a feasible continuation of a previous track, or as
a new target. Takc this new set of hypothescs and repeat this procedure with the second
observation except that more than one observation cannot be associated to one: track.
Continue in this way until every current observation has been associared. Reid referred to -
these as cluster hypotheses. o

While the total number of cluster hypotheses generated can be quite large, the
numbcr of track-to-observation associations is relatively few, equal to the sum over cach
track of the number of observations with which it is feasibly associated plus one. This
point is important in reducing the number of computations. One track-to-observation
association can appear in many different cluster hypotheses. Each association decision is
followed by a tracking filter update computation. If the track update computations were |
- performed for each cluster hypothesis then the same filter update computation would be
repeated many times. Instead, trackin g filter update computations are performed for each
feasible association, association probabilities are calculated over alternative hypotheses, and
~ then these are mapped onto the larger set of cluster hypotheses. It must be reemphasized

4 Donald B. Reid, "An Algorithm for Trackmg Multiple Targets,” IEEE Trans. Auto Control, Vol. AC-
24, No. 6, December 1979, pp. 843-854.
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that each association hypothesis assumes unique observation-track associations so that the
association probabilities are calculated over statistically independent states.

The optimal iniplementation of Reid's algorithm would require ever-increasing
computer memory as more hypotheses are generated on each frame. All practical versions
limit the number of hypotheses. One way to do this is to divide the set of tracks and
observations into independent groups requiring conflict resolution. The growth of

. hypotheses is also limited by the operations of pruning and merging. Hypotheses

considered unlikely, say those below some threshold, are dropped while those that are

- "similar” according to some criteria are combined. These operations are suggestive of track

. splitting but in that case there were no association probabilities and there were multiple

assignments of tracks to observations.

One limitation of Reid's algorithm is that it does not include multiple associations of
tracks to observations, such as may occur in merged measurements, or multiple
associations of observations to tracks, such as may occur in track spawning. The
fundamental reason for this is the manner in which the association probabilities are

calculated. One hypothesis consists of a set of unique associations. The probability of the

association hypothesis decomposes into the products of probabilities for the individual
components when the states are statistically independent as ensured by unique associations.

, Kovacich of Lockheed Missiles and Space Company has described a Bayesian
‘ multiple hypotheses tracking algorithm that remedics inese defects in Reid's approach.’
The key idea is to use a Bayesian network architecture (also known ar influence diagrams)
to provide a calculus to represent and manipulate joint probabhility distributions such as
those that occur in multiple target tracking. Rather than decompose the association-to-track
‘problem into unique association hypotheses, the fundamental unit in Lockheed's approach
is the scene which is defined as the joint set of observation-oriented hypotheses, track-
~oriented hypotheses, and track spawning outcomes for different clusters. The probability
for each individual possible outcome is calculated by the Bayesian ﬁctwork. This research

is of great importance.

5 'Michael Kovacich, "Application of Bayesian Networks to Midcourse Multi-Target Tracking,"
Proceedings of the SDI Panels in Tracking, Issue No. 4/1989, pp. 4-56 to 4-143.
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2.2 ADVANCED CONCEPTS

Fuzzy Sets and Conditional Event Algebras are two of the most interesting
advanced concepts under investigation for data association and tracking problems. Fuzzy
Set Theory is a significant departure from standard probability theory that could be applied
to problems in decisions (data association) and estimation (tracking filters). The
fundamental idea is to generalize the classical or crisp set in which membership is
dichotomous: an elemnent either is or is not a member of the set. Fuzzy sets eliminate the
sharp boundary dividing members and nonmembers by assigning to each element a value

‘or grade corresponding to the degree of membership in the set.

) S There is a great deal of controversy surrounding Fuzzy Set Theory, Fuzzy Logic,
' and Fuzzy Control, including:

* Isit good mathematics?
« . Ifitis good mathematics, then does it lead to new insights or methods?

« IHfitis good mathematics, then is it necessary to master Fuzzy Set formalism to
derive the new insights or methods?6

" Most of the interesting applications to date have been in Fuzzy Control and Fuzzy
Slgnal Processing. We are closely monitoring the apphcauon of Fuzzy Set Theory to data
association and tracking problems.

LR. Goodman, of the Naval Ocean Systems Center, and collaborators have
“developud a new approach to the data association and tracking problem known as
y conditional event algebras. Essentially, the idea is to create new mathematics for
‘ manipulating conditioncd random variables and processes. The goal is to develop better
mathematics for rcasomng based on evidence which would be more appropnate to data
association and tracking problems.

" 6 For one view of all this see "Baycsian vs. Fuzzy Theory,” Fred Daum, Proceedings of the SDI Panels on

Tracking, No. 1, 1791.
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3. SURVEY OF RECENT TRACKING SIMULATIONS

This chapter surveys three recent tracking simulations that represent the most

, 1mprcssxve efforts to date in the community that have been published and with which we

are familiar enough to be able to evaluate. For reasons that include competitiveness, not all

simulation results are published. These simulations are representative of the simulations

that have been pubiished and are representative of the state of the practice in the SDI
tracking community. '

Observation density is also thc single most defimng characteristic in SDI tracking
simulations, particularly Phase 1 sxmulatxons Tracking simulations measure computational
performance (speed and memory) and tracking performance (estimation and association
performance measures.such as estimation accuracy, credibility, and mhablhty and track
purity). As a pracncal matter, many slmulanons emphasize one aspect over the other.
Simulations with larger and more dense threats are more often used to investigate
computational performance because the data association algorithm and tracking filter
design, implementation, and experimentation are compromised by insufficient
computational resources. Those data association algorithms and tracking filters are selected
more for their computational thriftiness than for their tracking performance. High
observation density indicates the level of ambitiousness and complexity in the simulation,
determines the adequaé:y of computer resources, and must be considered in the
measurement of thc level of difficulty and in the judgement of the quality of tracking
performance

When one considers tracking simulations four issues should be keptin ﬁlind:

* How chdllenging is the threat being tracked? Tracking simulations can be
likened to dlvmg and ice skating competmons, for instance, in the sense that pcrformance
must be evaluated i in part by the level of difficulty of the effort..

*  What are the important assumptions and initial conditions? This is something
of an extension to assessing the level of challenge of the threat. There are several key
concerns: To what extent are clutter and background effects included and how are they
modeled? What is assumed for sensor properties such as resolutlon and accuracy? How is
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the sensor and signal processing modeled? Is sensor tasking scripteﬁ in advance or
performed on-line? Are data misassociations permitted? Start up conditions can grossly
affect trackihg performance. For midcourse simulations the key issue concerns how
. midcourse tracks are initiated: Does the simulation rely on tracks handed over from boost
phase and if so how good are those track hand-overs?

o What ure the key algorithm details? 1t is important to know some detail of the
algorithms and algorithm archiiecture to appreciate the context of the work.

' What are the scoring methods and measures of effectiveness? How are tracks
associated with true targets for evaluation? ‘

3.1 ADVANCED SYSTEMS ARCHITECTURES

’ Advanced Systems Architectures of the United Kingdom, under contract to SDIO,
has investigated the performance of their al‘gorithm against the unclassified 460 object Test
Case 1 of the SDI Panels on Tracking. Their algorithm, referred to as The Target-Oriented
Approach to Data Fusion, was described in detail in last year's survey. This description of
their work is based on an ASA report! and on a presentation to the Panels, which can be
found in the Proceedings.2 |

They considered tracks for only those 380 objects which were continuously visible
throughout the scenario. One track for each of these 380 objects was initiated by very
optimistic hand-over information: one second before the scenario begins, diagonal
covariance matrices are formed with 7 meters position error and .025 meters/second
velocity error. Cluster tracks for centroid and extent were initiated with the values
corresponding to the cluster's true members individual object track values. We consider
this to be unrealistic.

A key algorithm detail is the philosophy of their approach, which is to perform
individual object and clustpf tracking with processes operating as cohcurrcmly as possible.
This was a significant factor in the selection, implementation, and investigation of the data
association algorithm. A global nearest neighbor assignment of observations to tracks was
rejected in favor of a local nearest neighbor assignment in order to maintain insofar as
possible the concurrence of the track processes. It was unclear from the information

' Simulation and Demonstration of the T arget Oriented Sensor Data Fusion/Tracking Algorithm for the
SDI Mid-Course, Final Report, ASA REF: T90/007, 30 September 1990, Edward Goodchild.

2 Proceedings of the SDI Panels on Tracking, Issuc No. 4/1990, pp. 1-131 to 1-167.
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available to us what was done with extra observations, if there were any from one frame's
data, that were feasibly associated with a track.

Track to truth association was accomplished via a tafget-oriented local nearest
neighbor assignment: For each true target state considered independently of all others, the
track nearest to it was assigned for purposes of evaluation. The measures of performance
were the magnitude of position error and velocity error, for both the individual object tracks
and the cluster tracks. '

Various computeré were used to investigate diffcrcﬁt computer architectures,
including Alliant FX 80, Alliant FX 2800, MIPS M120-5, and a Cray Y-MP.

3.2° ALPHATECH ' ' \

Alphatech in the Algorithm Architecture Program3 analyzed portions of the
unclassified Test Case 2 of the SDI Panels on Tracking consisting of 750 objects and
portions of an unclassified 6,260 object threat case provided by Albert Perrella from IDA
using the SAAM software package. Key assumptions and start-up conditions were
20 microradian sensor measurement accuracy and 100 microradian sensor resolution and
hand-over track accuracy of either 200 meters and 20 meters/second on some objects in the
threat, not ncccs’sarily the booster or post-boost vehicle, or 350 meters and 4 meters/
second. We consider these start-up conditions to be unrealistic. Alphatech is moving,
however, to incorporate into their simulations cold start initial orbit determination
algorithms. The computers used were SOLBOURNE, DAP 510 & 61Q, and ALLIANT
FX/8. ' '

In one simulation, 50 objects from ;h'e 750 object cass were used to compare multi-
dimensional assignment algorithms, including:
«  Multi-dimensional maximal marginal return (M?R)
' Backtracking (from AT&T) |
¢ Branch and bound.

In a second simulation, the threat was 125 objccts from the unciassified 750 object
case, consisting of one booster delivering one. post-boost vehicie, with three reentry

3 Algorithm Architecture Program Subsystem Requirements Review, 22-‘23 August 1990, Prepared for the
‘Depanmls a Ment]gg lthe Ammy, U.S. Army Strategic Defense Command, and Interim Progress Review,
- ay . » '

3-3




vehicles, énd six cannisters dispensing 114 balloons. The goal was to éompare the
tracking performance of two different assignment algorithms: maximal marginal return
(MMR), which is a two-dimensional version of M3R, versus multiple assignment. In the
MMR case, unassigned observations were used to spawn new tracks using the nearest
tracks, in a version of track splitting. One measure of performance was average three-
dimensional position error as determined by unique assignment of tracks to targets based
on mxmrmzmg the sum of three-dimensional position errors.

A third simulation, driven by the portions of the unclassified 6,260 object case,
experimented with various computer architectures and parallelization. The measure of
performance was computer processmg time. The goal was to process one frame's worth of
data in 10 seconds or less, which is considered one nominal frame time. No tracking
accuracy performance scores were considered.

3.3 FULL-THREAT CLOSED-LOOP SURVEILLANCE ALGORITHM
FXPERIMENTS AT THE NATIONAL TESTBED

Larry Stalla of the National Testbed (NTB) Integration Contracting Team conducted
the most ambitious and impressive SDI tracking simulation to date with which we are
familiar. His results were briefed to the SDI Panels on Tracking and, absent tke classified
data, can be found in the Proceedings.4 Stalla used the test environment and test articles
integrated into the Version 2.3 Simulator by the NTB Integration Contractor. at NTB Joint
Program Office--Simulation Directorate (NTBJPO/SD) direction between September 1988
and November 1990. The primary objective of Stalla’s experiment was to'demonstrate a
capability to simulate a launch-to-impact scenario, so called end-to-end, using a complete
suite of test articles in a simulation environment of realistic full-scale threats and sensor
performance. A secondary objective was to characterize the performance of the test
articles.

Stalla conducted an experiment for each of four levels of classified threat: the full

dcmgn-to-thrcat DTT-1; the full phase-one threat scenario POTS-3A,; the DTT-1 threat with

dccoys removed: and the DTT-1 threat with decoys removed and perfect sensor rcsohmon
assumed. Each experiment was run three times:

4 Proceedings of the SDI Panels on Tracking, Issue No. 1/1991, pp. 3-123 to 3-159.
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¢ The baseline run in which the full set of data association, tracking (state
esdmation or filtering), and sensor tasking algorithms were 1mplcmcnted as an
integrated suite, in a "closed-loop;"

+ A runin which the data association algorithms were not implemented, instead
data association was performed essentially perfectly based on true object
identification; and

‘e Arun in which in addition to perfect data association, tracking was performed
using true targe: state information, leavmg sensor tasking as the only actual test
amelc

‘Because of the scale and scope of the experiments, we will not in this limited space
attempt to describe the details of the algorithms that were implemented as test articles.
Suffice it to say that cold and warm start track initiation algorithms and track maintenance
algorithms were intégratcd. Hand-overs between sensor clements were simulated,
including boost-phase to midcourse (BSTS to SSTS), space-based midcourse sensors to
grouhd-baséd probes (SSTS to GSTS) launched based on the information in the run (both
track estimates and target truths). Various a551gnment algonthms apparcntly were used for
data association.

Stalla's measures of pcrformance mcluded thc number of kills and misses by the

Ground-Based Interceptor (GBI); the fraction of total GBI divert capacity used per divert;
unnormalized track position error distribution for each sensor system; and the conistellation
coverage efficiency in terms of the numbcr of object sighting messages (OSMs) reported
from each sensor platform. There was also a score for data association accuracy.
Classification limitations‘prcvent discussion of the results here.

. Stalla’s experiment has generated controversy, mostly due to the poor performance
exhibited by the test articles. We were quite positively impressed by the scale and scope of
the experiment, which no other faéility in the country could even have attempted. This
reflects most favorably on the NTB. The performance of the test articles was indeed poor,

which some have construr J as reflecting poorly on the NTB. We feel this criticism is not

justified. Our undcrstandmg is that the Version 2.3 Simulator is not an algorithm design
program but rather an algorithm integration program. The test article performance was
exactly a reflection of the quality and the state of development of the al gorithms that were
integrated. SDI, and particularly Phase 1, surveillance, tracking, dxscnmmatlon battle
management, and interceptor guidance are the most challenging problem in defense
research and development today. Therefore, it should be a surprise to no one that a test
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‘article integration program that precedes vigorous algorithm experimentation would end up
with test articles that perform poorly. Stalla's experiments are not representative of what
tracking performance is eventually possible and should not be construed in that manner.

3.4 CONCLUSIONS

Good performance of data association, data filtering, data management, guidance,
discrimination, -etc., cannot be assured by algorithms anywhere in the community,
otherwise SDI Phase 1 surveillance, tracking, battle management, and intercéptor guidance
would be a "solved problem.” It most certainly is not that. Many experiments focused
specifically on est article development will be required to begin to understand in detail the
. keys to good performance and bad: Progress towards "solving the problem™ will be made
~ only by widely disseminating the methods and results of experiments throughout the SDI
community. Test article experimentation is the primary justification for the existence of the
STB separate from the NTB. It would be an error of major proportion for there to be a
controversy Surrounding poor results that might inhibit the critical flow of information and
results from SDI simulation experiments. |




4. CLUSTER TRACKING

One approach to managing the high density SDI threat, particularly duripg carly
midcourse, is to forgo tracking individual objects and instead to track closely spaced
individual objects as a group or cluster. Following the Panels, we will distinguish between

. targets as théy are in truth, referred to as a group, and targets as they are observed in sensor
measurements, referred to as a cluster. Group will also be used generically to refer to both.
Since individual target tracks are ultimately what is required, the key issues in cluster
tracking are: ‘

e Whydo cluster trackin g?

. When is cluster iracking performed rather than individual target trackmg and
vice versa, and when and how is the transition between cluster and mdxvxdual
object tracking accomplished?

*  What type of cluster trackng is perfonned"
The Panels have defined a spectrum of group tracking approaches:
*  Group: Group properties alone are tracked.

«  Group with Simple Individual: Simple individual object information is tracked
but the trackmg of group propemcs is emphasized.

*  Individual ard Simple Group Simple group informa'ion is tracked but
mdmdual object trackmg is emphasued.

. I-zdzvdual object nacang Indmdual object tracking alone is performed

The Panels have also identified a sct of clustcr tracking algonthm architectures.
These can be found in the previous survey.!

4.1 INTRODU\.TION

Shortly after deployment from post-boost velucles (PBV5s), reeniry vehicles (RVs)
and decoys are so closely spaced that sensor observations consist of unresolved clumps of
objects and extended objects. A clump is an observation arising from two or more targets

Y Proceedings of the SDI Pane_ls on Tracking, Issue No. 1/1991, pp. 3-123 10 3-159.
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that appears to be from an individual object, as would happen when two or more targets are-
not resolved by a sensor. An extended object is an observation extending over many more
pixels than an observation from a single object. With increasing time from deployment,
clumps may resolve into individual ohservations and resolved closely spaced observations

may spread as the targets disperse.2 Target resolution is a function of the optical sensor
resolution and the viewing geometry and range. For this reason, as sensors move along
their orbits, observations could resolve or unresolve, spread or contract.

_ It is not possible to establish individual tracks on the targets in a clump since
mdmdual object tracking is possible only on individual observations. The density of
closely spaced resolved observations may compel cluster tracking over individual object
tracking as the only practical alternative because of great computational expenses in track
initiation and misassociation. If targets contract or unresolve, the tracking architecture must
transition between individual object and cluster trackmg

Thcrc are critical operational requirements for maintaining tracks on md1v1dual
targets, mcludmg discrimination of RVs from decoys, threat assessment, and threat
engagement. Cluster tracking is performéd when individual object tracking is impossible,
too eipensive, or not necessary. As the threat resolves, cluster tracks spawn individual
object tracks by initializing individual object tracks from the cluster track. Cluster tracking
should be evaluated based on relatively inexpcnsi\}c computation and communication
requirements and the quality of the initial estimates for the spawncd 1nd1v1dual object
tracks. '

4.2 CLUSTER TRACKING

For resolved closely spaced observatinns a cluster track develéps estimates on some

_ group properties, such as cluster centroid position and velocity and centroid extent. A
cluster gating logic that is'a generalization of that for individual object tracking determines
the observations to be considered for updating the cluster tracks. A conflict resolution logic
is required for all observations that satisfy multiple cluster track gates. All observations
assigned to a cluster track are used to computé the measurement centroid and possibly the
measurement dispersion. The measurement centroid updates the cluster centroid state in the

. standard manner of Kalman filtering. The modeling of the dynamic§ of the cluster extent

[

2 This is not 10 suggest that the threat density will not or cannot be increased later in the flight.
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distinguishes most approaches. Tracks for objects sphmng off the cluster are mmahzed by
the cluster centroid state. '

" Drummond, Blackman, and Hell3 have extended cluster tracking to mult1ple sensor
cluster tracking, where the principal difficulty is that the observed size and shape of the
cluster varies from sensor to sensor. For this reason, multiple sensor cluster tracking must
have more information than just the location of the cluster. Drummond et al.'s approachis
to model the group as an ellipsoid in three dimensions. Separate filters are established for
the group centroid and the ellipsoid extent parameters. The group centroid state estimate
initializes the tracks for objects that split away from the group, as before. The ellipsoid
extent state csumatc permits sensors in different positions to associate groups.

The cluster tracking efforts with which we have some detaxled information are
described in Table 4-1.

Table 4-1. Cluster Tracking Algorithms

Contractor Principal Developers ' Brief Description
Hughes Aircraft and Oliver Drummond, Muttiple Sensor algorithm for lracking
General Dynamics Samuel Blackman cluster centroid and extent.

MIT/Lincoln Laboratory | C.B. Chang, Keh-Ping Dunn, | Individual tracks for the observations
: Ming Tsal detining the edge of a cluster to form

. tracks for cluster members, which are

‘ assumed to be moving in’ parallel with

| edges.
Nichols Research Robert Osterheld, Develop individua! object tracks of
Corporation - LisaBrahm RVs and decoys deployed off a
. : common PBV through their closely
spaced phase. ‘
Teledyne Brown Keith Maples Track cluster centroid and the |

parameters of an RV-decoy deploy- .
ment mode! to develop individual
object tracks.

3 O.E. Drummond, S.S. Blackman, K.C. Hell, "Multiple Sensor 'l‘rackmg‘ of Clusters and Extended
lOgbégcls Techrucal Proceedmgs 1988 Tri-Service Data Fusion Symposzum, Laurel, Maryland May
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4.3 CONCLUSIONS

Much more work needs to be done to explore the diversity of algorithms and '
algorithm architectures and the critical issues associated with cluster tracking. Work to date

has only begun to address the problems and possibilites.

The Surveillance Testbed (STB) will provide an impbrtant environment to
investigate these issues. There is one cluster tracking algorithm in the initial set of test
articles being hosted on the STB. The status of cluster ‘racking remains for the tﬁost_pm
as it was last year: In need of experiments and analyses that explore the diversity of cluster
tracking algorithms and algorithm architectures and the crutical issues outlined above.




5. SURVEILLANCE TESTBED (STB)! ,

Substantial progress has been made towards construction of a testbed to experiment

on and evaluate alternative surveillance algorithms--detection, tracking, discrimination,
and sensor tasking--and to assess ballistic missile defense system-level surveillance
performance. While the STB is being constructed to support both purposes, to the extent
that one takes precedence over the other, first priority must go to evaluation of surveillance
algorithms: An emphiasis in favor of experimentation on algorithms increases the prospucts
for a testbed that successfully assists in the dcilelopment of surveillance algofitl{ms and
accurately assesses system-level surveillance performance. The program seems on track to
ensuring the creation of a facility that is sorely needed by the SDI tracking ‘commu'nity.

The Surveillance Testbed is critical to SDIO. The STB will be the SDIO facility
where contractors can with a minimum of modification run their own software in high
' fidelity, high detail surveillance simulations to verify detection, tracking, discrimiﬁation,
and sensor tasking. A contractor's algorithms can be tested by themselves on the STB as
well as in their role in a complete surveillance system by inserting them into a
complementary set of "house algorithms,” algorithms maintained on the STB. With SDIO
approved threat scenarios, and SDIO supplied signal generation and sensor and signal
processing data that are the iﬁputs‘ to the surveillance algorithms, critical algorithm
expcrim'cntation and evaluation can take place in a controlled environment and scored

according to standardized methods, thereby facilitating performance comparisons. By

having the STB supply the inputs that drive high fidelity, high detail simulations, SDIO
saves the resources otherwise spent when each contractor develops their own extensive
_simulation drivers. '

1 This section is based on material from briefings given by Mike Wesley of Nichols Research Corporation
(Huntsville), to the SDI Panels on Tracking, from the 15 October 1990 Coordination Draft of the
Surveillance Test Bed (STB) Build 1 (Phase 1) Design Documentation, CDRL 119, from the STB Build
1 Functional Requirements Document, CDRL A099, 1 February 1991, and CDRL A099-1, 1 July
1991, and from meetings of the STB Test Article Interface Working Group. .
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5.1 THE STB DESIGN

The STB is comprised of the Test Environment, which is the fixed experimental
facility, and Test Articles, which constitute the subjects of the individual experiments. The
STB' eventually will consist of simulations to experiment on and evaluate alternative
surveillance algorithms, which are used to develop and validate functional representations
of, or data bases for, surveillance algomhms Based on these functional representanons
and data bases; large-scale mmulatxons will quantify system-level performance of the
surveillance system. '

The Test Environment is comprised of the Test Driver and the Framework. It is
within the Driver where the user specifies threat scenanos and sensor suites and where
threat modeling, environments modelmg, scene generanon and sensor/signal processing
occurs. Trajectory propagation of the threat and sensors will also be done by the Dnver
The outputs of the Driver will be sensor measurements: object sighting messages (OSMs)
and radar pulse returns for the sensors. User control of the simulation set-up, execution,
momtormg, and output format are controlled by the Framework.

. A typlcal STB expenment ‘will have a definition and pre-processing phase, an
execution phase, and a post-processmg phase.  Construction of the inputs to the test
articles, that is, the test drivers, will be performed in the definition and pre-pmcessing
phase, beginning with the specification of a threat from a master threat tape. For each of
the objects in the threat, across their entire trajectories, high detail target signature data
bases are constructed to the extent possible from SDIO's standard phenomenology code:
the Naval Research Laboratory's (NRL's) Strategic Scene Generation Model (SSGM).
These trajectory and signature data bases are constructed without reference to a specific
surveillance sensor architecture. To this point, test drivers can be standardxzed for all

‘experiments.

Each particular experiment is specified by a sensor architecture that includes details
on serisor orbits, sensor fields of view, and various sensor models, parameters, and signal
processing algorithms. Target trajectory and signature data bases, together with high detail |
background signature data bases, are inputs to sensor focal plane and signal processing -

" models to generate sensor measurements. The sensor measurements that result, which are

referred to as test drivers, are the inputs to surveillance algorithms. These test drivers can
be standardized only to the extent that the sensor details and the sensor fields of view are.




. The STB is to be constructed in two distinct phases, the so-called Build I and Build
“T. According to the 1 February 1991 Functional Requirements Document,2

Build I will concentrate on the development of a simulation framework that
will provide the necessary drivers and executive functions to control the
simulation and feed the STB test articles with data necessary for their
operation. The Build I test article algorithms will come from existing
-programs or from element developmeat programs. Build I will provide an
initial operational capability (I0C) testbed for evaluating SDS [the Phase 1
Strategic Defense System] surveillance requirements and resolving critical
feasibility issues in an evolutionary fashion with intermediate capabilities
supporting ongoing analyses. Build II will follow Build I development and

. will provide a fully modular testbed for evaluating alternative element
surveillance algonthms models, and concepts of operations at a system
level.

The purpose of the Build I STB is to provide a simulation capability to
investigate the SDS surveillance functions and performance capabilities for
the SEIC [Systems Engineer and Integration Contractor}, the SDIO, and

+ other designated government and contractor analysts... . The purpose of
the Build II STB is to provide a fully robust test environment to evaluate
alternative surveillance algorithms or design implementations for the SDIO,
the SEIC, and other designated government and contractor analysts.

'§.2 STB ACTIVITY OF THE SDI PANELS ON TRACKING

The SDI Tracking Panels have played a critical role in the development of the STB.
Before the STB program was started the members of the Tracking Panels, representing
tracking algorithm designers from across government, FFRDCs, contractors, and academe,
called for an algorithm testbed of this sort. A testbed on which experimentation could be
performed and high detail, high fidelity threat scenarios complcte with sensor measurement
data could be produced and supphed to contractors for use in their own tcstbeds During
the developmcnt of the STB, the Panels provided a peer review of the STB development
plans and supplied the input of the intended user community. The Panels deserve credit for
helping to shapc the STB into a facxhty that should well serve SDIO and its contractor
community. In this secnon, we review the Panels role in the STB.

The Panels raised several critical i issues when the initial STB development plan wés
presented. In a resolution delivered to SDIO, the SDI Panels on Tracking during the 27-29
November 1990 meeting held that:

2 Op.cit, Ref. 1, pp. 14 - 1-5 (scc p. 5-1).




1.

The value of the Surveillance Testbed (STB) to the S'trategic Defense Iritiative
Organization will be greatly enhanced by constructing the Build 1 STB to ¢
flexible enough to accommodate the diversity of tracking algorithms. Among
other things, this requires an emphasis on the interfaces between test articles
and test environment, including feedback from the tracker to the signal
processor. The Panels will work with the STB to detail these interfaces. The
Panels urge that preparations for accommodating alternative algorithms be a
principal requirement of the Build 1. The Panels are very concemned that in the
absence of this requirement in the Build 1, STB will fail to be a tool for
developing and demonstrating tracking algorithms and STB will fail to quantify
strategic defense system performance accurately.

Early conclusions on system level performance and system level requirements
drawn from experiments using baseline algorithms may be of limited validity
and should be viewed with reservation. Baseline algorithms need not be
representaiive of the performance to be achieved by alternative algorithms.
Program offices should have a mechanism to comment on the data and results
produced by the STB. '

The Panels’ recommendations to the STB are summarized as:

L

Interfacés

Development of flexible interfaces between STB test environment and tracking
algorithms must be emphasized early in order to best ensure that the STB
achieves its goal of providing a testbed for developing and evaluating
alternative surveillance algorithms;

Limited emphasis should be given to early results of systeni-level performance
experiments with the "representative, baseline” algorithms used for testbed
integration validation. :

The STB must support a‘portablc testbed facility.

The Panels identified and analyzed three different critical interface issues for the

STB:

Interfaces between individual test articles and the STB test environment;

Interface requirements stemming from permitting feedback from tracking
algorithm to sensor and signal processor, such as sensor tasking; and

Interfaces between test articles.

It should be no surprise that hosting tracking algdrithms on the STB will require some
software modifications. Everyone can agree that it is imperative to keep the modifications
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to a minimum. The real issues are what sort of modifications, how many, and by whom,
. the STB contractor or the tracking algorithm contractor? For the most part, it must be the
tracking algoriihm developer who modifies their software since they are the most
knowledgeable of the code's contents. But their willingness to utilize the STB depends on
the scope of the modifications. The STB's government sponsors need to appreciate that,
- everything else in order, the STB will fail or succeed based on the scope of software
' changcs required for hosting surveillance algonthms

To appreciate interface demands on tracking algorithm software, it is ncccssary to
describe the software structure of the STB. W..hin the STB, data are maintained in
ldgically related groups known as data objects. For example, there are data objects for
object sighting messages (sensor measurements) and for tracks. |

Tracking algorithms will be implemented as subroutines within an Ada program that
is referred to as an Ada shell. The shell unloads data objects into the data structures
corresponding to the tracking algorithm argument list via devices called ports and
parameters. The shell calls the tracking algorithm, moves the data in, and returns the data:
to the system data objects after completion of the tracking algorithm.

" Tracking algorithm-data object interface is provided by ports and parameters. Ports
(to the data) permit the tracking algorithms to access the data objects and get the data.
Parameters pcnmt trackmg algorithms to access the data applicable only to it, for i mstancc, '
preventing the trackmg algorithms for accessing truth, which is maintained in the data
objects for post-processing performance evaluations. Parameters also adapt the data in data
objects to the specific needs of the trackin g algorithms. The ports and parameters are key
devices that perrit the interface of multi-party software not written to be interfaced.

The use of ports and parameters does not prccludevdata defined internally within a
tracking algorithm, for instance variables for intermediate results in computations. But, all
internal data not passed out to data objects through the ports and parameters will be lost,
that is, will not be saved between calls of the traéking algorithm. The reason for this is
essentially that the STB software simulates a constellation or system of sensors not by
replicating the surveillance algorithms, one complete set for each sensor, but rather by

. maintaining data objects for each sensor and using one common set of surveillance
algorithins. To execute a particular sensor's surveillance function, the STB's simulation
executive inputs that sensors data objects into the common set of surveillance algorithms.
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Between succeeding executions of a.particular sensor's surveillance function, znother
sensor’s call to the common set of surveillance algorithms will overwrite the internal data.

For internal trackmg algorithm data that need to be retained over multiple calls, thc
tracking algorithm, its Ada shell, and the STB data object system must be modified to
establish system data objects for storage of these additional data and ports and parameters
to permit access. Potential users need to analyze STB data objects and their own tracking
algorithms to identify those internal data that need to be stored in additional STB data
objects. The STB needs to prepare to accommodate those additional data objects and.to
modxfy the ports and parameters accordingly. ‘

The Panels were concerned that the STB accommodate the many trackmg
algorithms that are designed to send information from the tracker to the sensor and signal
processor to affect their operations. For instance, sensor tasking algorithms determine
sensor fields-of-view based on tracking information. These algorithms are critical to the
performance of some surveillance algorithms, particularly for sensors with narrow fields of
view. Another example is where tracking information is used to vary the sensor scan
pattern or to vary detection threcholds across the field of view.

The STB now includes sensor tasking algorithms as test articles in high detail

simulations. This means, however, that many of the tasks that were to be done in the pre-'
~ processing phase will now have to be done on-line during the simulation as tracking

information is used by the sensor tasker to determine fields of view. Background clutter
scenes will have to be produced on-line during the simulation. Target detectior and signal
proccssing will also have to be done on-line rather than in advance since what the sensor
sees will not be determined in advance of the simulation.

Tracking algorithm functiéns that are considered by the STB as basic; test article
units are: .

«  (Cold start) Track initiation

*  Track continuation

«  Differential initialization (warm start/track splitting)

. Track fusion

. Cluster tracking '

e  Sensor tasking.




| Any subfunction within these, such as a Kalman or least squares filter or data
association algorithm, cannot be tested except by being placed within one of the above
basic u'nits. An experimenter's tracking algorithm could consist of any number of basic
tracking algdrithm functions. A “house set” of tracking algorithm functions will be
maintained on the STB available to supplement those functions within an experimenter's
tracking algorithm. ‘ |

Interfaces bctwcen tracking algorithm functions are, in general, hxghly non-trivial.

- After all, these interfaces manifest the logic of the u'ackmg algorithm. Trackmg algonthm
interfaces can and will vary widely with algorithm and with contractor. Large contractor
efforts will probably have a mostly complete set of tracking algorithm functions and will
probably ndt have any serious tracking algorithm to tracking algorithm interface issues.
Small contractor efforts, on the other hand, may not have a complete set of tracking
algorithm functions and may be looking to the STB for supplementary functions. In this
case there will be a difficult job of interfacing those functions.

Early System-Level Evaluation

The STB is not an élgt'wﬁthm design program.. In the Buifd I, "representative,
baseline" surveillance algorithms readily available will be hosted so that integration testing
of the simulation framework, test drivers, and test articles can be performed. Baseline
surveillance algorithms used by the STB contractor for integration testing, however, may
not be reprcsentanve of the performance of surveillance algorithms being developed by
other SDI contractors. Conclusions on system-level performance drawn from experiments
using baseline aigorithms that are not representative in terms of performance would be of
limited validity or even misleading. A redefinition of surveillance requirements as a result
oi such experiments would be a mistake. ‘

Having the means to evaluate alternative surveillance algorithms using high detail
test dr.vers is of the utmost importance to SDIO. Creation of such a facility is extremely -
challengmg and ambitious in its own right. Only after a host of algorithms have been
xmplemcnted can performance which is representative be appreciated. With competitive
algorithms in hand, the STB wxll be in position to quantify strategic defense system

performance accurately.




Portable Testbed

A portable testbed facility can be created either by distributing computer threat tapes
or permitting the operation of tracking algorithms from remote hosts. There are several test _
tape formats. Usually sensor tasking and signal 'processing are done in advance so that a
threat tape would consist of sensor orbits and true target states (including intensity) and
measurements. To permit the incorporation of sensor tasking, a test tape will have to be
accompanied by a rudimentary signal processing algorithm to generate sensor
measurements on-line, during the simuladon.

The STB has recently decided to permit the ' capability of running tracking
algorithms on the STB from remote sites. This is most welcome and important. In fact,
for tracking algorithm experimentation, this may turn out to be the dominant mode in which
the STB is used inidally. Tracking simulations running from a developer's own computers
could use the STB to generate sensor measurements on-line during a simulation in response

.to calls from the tracking algonthms running on thc remote host. In this mode, the STB
would csscnually play the role of sensor.

Permitting remote host operation of trackmg algorithms on the STB usefully
- segments the STB user community into three groups:

o . Low-cost algorithm experimentation: threat tapes could be distributed with
sensor architecture, true target states, sensor measurements, and rudimentary signal
processing algorithms.

*  High-fidelity algorithm experimentation: remote host operation of the STB to.
gain its sensor capabilities, including sensor tasking; no access to STB surveillance
algorithms.

*  Algorithm evaluation and access to STB surveillance algorithms: hosting of
algorithms on STB; iniegration of algorithms in surveillance system to demonstrate
performance; government evaluation of surveillance algorithxhs in a controlled environment
and scored according to standardized methods to facilitate performance comparisoné.

The attractiveness of this segmentation is that the STB can be all things to all users.
Flexiblc high detail and fidelity algorithm experimentation can be conducted by contractors .
from their own facilities at a minimum cost without going through the rigors of hosting
algorithms on the STB. After successful development work, these contractors would be
very motivated to modify thei- software as needed to permit the government to evaluate
their algorithms on the STB.
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the STB.

§.3 CONCLUSIONS -

Testbed priorities must be clearly established:

Vigorous surveillance algorithm development must precede surveillance system
evaluation;

Prepare early to accommodate the diversity of tracking algonthms and
algorithm architectures; :

Interfaces between test environment and trackmg algorithms must be flexible
and robust;

Only after repmscniative surveillance performance is appreciated and cjuantified
by experiments on individual surveillance algorithms can systcm-lcvcl
surveillance performance be assessed accurately.

Thc SDI Panels on Tracking will continue to work with the STB, to provide the
SDI tracking community and algorithm experts a voice in the construction and opcratlon of




PART 11

SOME REMAINING PROBLEMS PERTAINING TO THE |
DESIGN, UTILIZATION, AND EVALUATION
OF TRACKING ALGORITHMS




6. SYSTEMS ISSUES IN MULTIPLE SENSOR
BMD TRACKING

6.1 BIRTH-TO-DEATH TRACKING

Cues from boost surveillance satellites to midcourse and terminal systems can
consist of state vector estimates and estimation error covariance matrices for the states of
the boosters at the end of powered flight, known as burnout, or at the times of the
sz:2llites’ last observation for each booster. These estimates are then predicted ahead to
future times, in the first instance by propagation along mostly free-fall orbits, and in the
second case by extrapolation or prediction to bumout preceding free-fall propagation. Cues
from midcourse passive electrooptical surveillance sateliites to ground-based radars can
consist of state vector estimates and estimation error covariance matrices for the positions
and velocities for the free-falling objects after the post-boost phase at the times of the
-satellites' last observations for each of the objects.

In general, trajectories are complqtcly spccified for all times by knowledge of the
" so-called initial conditions. Uncertainty in the initial conditions .irhplies uncertain
knowlédge of the trajectory later. In addition, if there are dynamical model errors then the
trajectories are uncertainly known regardless of the precision with which the initial
conditions are specified. For the payloads of ballistic missiles, midcourse orbits are largely
determined by position and velocity at the end of booster powered flight. The intermittent
* accelerations of the post-boost vehicles will alter the orbits and earth impact points of the
payloads, as will acrodynamic forces.

Tracking algorithms durmg the track initiation phase estimate the initial conditions
and their error based on some initial set of observational data. Subsequent data are used to
refine the estimates of target trajectories and errors during the track maintenance phase.

Track initiation refers to the process of 1nmahzmg a full state track for the three-
dimensional motion of the target. Cold start track initiation is the process of computing an
initial state estimate vector and an initial state estimation error covariance matrix from the
time sequence of observations in a focal plane track. Itis usually comprised of focal plane
tracking (also known as track assembly) and initial trajectorv/orbit determination. '
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The assembly of observations in a focal plane track is considered a candidate full
state track. Each focal plane track consists of a time sequence of measurements, one from
each of muitiple successive frames of Sensdf data, linked together by the hypothesis that
they are from the same target. In focal plane tracking the dynamics of the targets are
approximated by simple models. Rather than explicitly modeling the three-dimensional
dynamics of the targets' moticn, azimuth and elevation angles dynamics are modeled as
independent linear or quadratic functions. The Kalman filters that result are referred to as
polynomial filters for constant vélocity or constant acceleration targets. As an alternative to
filters for azimuth and elevation, independent polynomial filters for each component of the
line-of-sight vectors can be used to track the targets in the focal plvanc. These avoid the
discontinuities in azimuth as targets pass through the sensor's nadir and zenith points.

Booster track initiation is usually accomplished by the algorithm variously known
as template matching or profile matching. Succinctly, templates are historical averages and
a priori assumptions of booster trajectories derived from data observed by national technical
means and trajectory reconstruction programs. There are tefnplates for altitude, ground
range, acceleration, mass, intensity, etc., versus time from launch for each missile type and
mod. Two fundamental i issues, which we address below, 1mmcdxatcly attend this use of
historical averages and a priori assumptions on booster trajectories: ‘

*  To which template should the observed data be matched?
*  What s the reliability and credibility of relying on emplates?

‘ Midcourse angles-only initial orbit determination is an old sixbjcct with a pedigree
that extends back almost two hundred‘years to Gauss and Laplace. The fundamental
midcourse tracking challenge to this time has been the large number and high density of
missile booster, RVs, decoys. and clutter to'be tracked. As the severity of the threat
dcchncs, as measured by densxty of Ob]CCtS seen by a sensor, from a defense against a full
Soviet attack, to a defense against accidental or unauthorized missile launches, to theater
missile defense, data association becomes less of a concern. Single satellite angles-only
track initiatiop in the dense observavtion' environments of Phase 1, and perhaps GPALS, is a
critical issue. ’

‘The issues in BMD cold start track initiation, both for the template -matching in
‘boost-phase and for midcourse, are first the ability, in a dense observation environment, to
assemble ‘a reasonably small number of credible time sequences of angles-only
measurements without being able to use models for the detailed models for the three-
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dimensional target motion. The other issue is the reliability of the initial trajectory/orbit
determination algorithms and the accuracy, precision, and credibility of their initial state
estimates and estimation errors. Low precision state estimation errors will lead to greatly
complicated data association problems for track maintenance in dense observation
environments. The critical issue is to gain high enough precision estimation errors. to
mitigate data association problems. We know of no simulations where these issues are

thoroughly examined.

In a fully integrated ballistic missile defense surveillance system, tracks would be
disseminated and fused throughout the various battle managers and sensor elements:
.- boost-phase surveillance sensors, space-based and ground-based space surveillance
sensors, and terminal-phase sensors. Ballistic missile defense birth-to-death tracking is the
concept of maintaining continuous tracks on targets from launch through to impact by
fusing tracks across sensor elements. Birth-to-death tracking schemes range from the
. -grand to the temperate. ' '

~ In the grandest design of birth-to-death tracking, downstream narrow field-of-view
sensors that lack adequate independent search capability are enabled by pointing directions
from upstream sensors. Additionally, downstream sensors initialize tracks by relying
entirely on upstream track hand-overs. Boost-phase tracks would be handed over to the
post-boost and midcourse surveillance sensors for continuation: booster burnout position
and velocity would initialize the post-boost vehicle (PBV) track. Narrow field of view
optical midcourse sensors would be directed where to look for the PBV rather than
independently searching. Ground-based radars would also be cued where to look for
midcourse and reentering objects to gain increased detection ranges. As the PBV dispenses
reentry vehicles (RVs) and decoys, tracks for each would be established by spawning new
tracks from the continuing PBV track. Every object in the midcourse then could be traced
. back to its origin, PBV and booster, and a track for each established essentially by
continuation of booster tracks. There would never be need during midcourse for the "cold

start” track initiation procedurcs of assembly of a sequence of measurements for initial orbit

determination data processing. All midcourse tracks would be initialized by "warm start"
track initiation: hand-over of tmck data from upstream sensor elements and spawning new
tracks from exxstmg tracks.

With track hand-overs, the battle manager can launch and guide ground-based
'mtcrceptors to their targets entirely mdepcndcnt of their gmund-bascd radars. Midcourse
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tracks could be handed over to interceptor§ as in-flight target updates to enable on-board
guidance algorithms to fly the interceptors into the close proximity of their targets, where
the interceptor's own on-board sensors would take over. Midcourse tracks handed over to
the battle manager could also permit the early commit of interceptors before their radars see
the targets but, in this case, the radars would guide the interceptors as the targets come into
view. Ground-based radars could use midcourse track hand-overs to cue their search to

concentrate energy into narrow fields of view to gain increased detection ranges. The
common goal of these cueing schemes is to enhance the battle space of the ground-based
defense system. '

Birth-to-death tracking in its grandest design is-logical and efficient. It possesses
the virtues of omniscient accounting of threat objects, enabling of relatively inexpensive

‘narrow field of view optical sensors, and avoidance of the immense computational expense

and complication of cold start track initiation. But it counts on the existence of a seamless
link across sensor elements, in which upstream track information is available exactly when
and where it is needed. Such a link is ambitious, perhaps even feasible. But a surveillance
system that is entirely reliant upon it is critically suSceptible to catastrophic failure.

Temperate birth-to-death iracking schemes cue downstream sensors to assist (rather

~ than enable) relatively narrow field of view optical sensors, to increase the battle space of

ground-based BMD systems, and to avoid cold start track initiation but only i and whén
upstream track hand-overs are available. Hand-over tracks are not considered to supplant
an independent operational capability for each individual sensor or individual sensor
clement.

Ultimately, it is a question of capability versus robustness agaittf catastrophic
failure. Each sensor element and each individual sensor must be cap: . - of searching a
reasonable surveillance regior and performing cold start track initiation to reduce
vulnerability and to constitute a system that works in a world of communications delays
and mxsducctxons and the unexpected, but only if adequate capabxhty is achievable or
affordable in individual sensors or sensor elements

6.2 BOOSTER TRACKING AND TEMPLATE MATCHING

Boost-phasc tracking experience to date is Iimitcd. What can be performed well is

the tracking of a small number of targets across the focal plane (focal plane tracking) of a

passive electrooptical sensor on board geostationary satellites without explicitly modeling
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_the boosters' detailed three-dimensional dynamics or explicitly tracking the boosters' three-

dimensional trajectory. Historical averages and a priori assumptions for booster altitude
versus ground range flight profiles and intensity versus time profiles, known as templates,
are used to estimate launch locations, times, and azimuths, and to identify missile types.
But with regard to using focal plane tracks and templates to predict future states in post-
boost, midcourse, and reentry, the accuracy required for BMD_ has not yet been
demonstrated. Brilliant Pebble booster tracking of a particular sort has been demonstrated
in limited simulations with low fidelity data and without clutter. Extensive simulations that
demonstrate convincingly the tracking accuracy required for booster surveillance, good
weapon-to-target assignment, and good pebble guidance performance remain to be done.

' Booster tracking algorithms can:

»  Estimate so-called tactical parameters, which are the missile launch locations,
times, azimuths, altitudes, and the degree to which the missile is lofted or
depressed from a nominal trajectory;

¢ Assess the number and types of missiles launched in the raid;
e Predict missile payload impact points on the earth;

*  cue midcourse and terminal ballistic missile defense systems, both sensors and
interceptors; and

*  Provide fire contrel information for booster interception.

Tactical parameter estimation, raid assessment, and coarse impact point prediction

constitute the traditional tactical warning and attack assessment (TW/AA) functions. More
precise impact point predictions and cues to midcourse and terminal sensors and
interceptors can enhance midcourse and terminal BMD performance and also enhance

‘TW/AA performance.

There are essentially three data processing or filtering methods for tracking

boosters. The first method is to model in detail the complex three—dxmens:onal dynamics of

the booster. This requires some knowledge of key booster parameters such as thrust,

'mass, and drag. The full art of Kalman filtering technology is required to compensate for

model errors such as uncertain and neglected parameters in the booster dynamics models
and booster maneuvers. The Kalman filter's integration of the booster's three-dimensional

“equations of motion and estimation of the booster's three-dimensional trajectory using the

sensor data, if it is achievable, reliable, and credxble should provide the best trackmg
performance.




For the Kalman filter booster tracking algorithm, the dynamics model is critical.
Booster dynamics are complex, involving gravity, time varying propulsive forces, and
aerodynamic drag and lift forces, which vary with the missile type and mod and with the
booster's velocity and angle of attack. Detailed models used in trajectory construction and
reconstruction are not appropriate to tracking because they depend on too many individual
parameters, which cannot be estimated accurately, rehably, and credxbly in real time. It
should not be necessary, however, to model and estimate these many parameters to
accurately track the target for the purposes of BMD. Neglecting some parameters, or
modeling their effect approximatel;,’ or incorrectly will introduce model errors in the
Kalman filter. These must be compensated by advanced Kalman filtering techniques.

Missile booster trajectories are principally determined by propulsive capabilities and
guidance sophistication. In general, miséile boosters both as a matter of course and as a
matter of design can execute very significant maneuvers, including changes between orbital
planes (yaw), staging and other thrust variations, and maneuvers designed to burn off
excess propulsive energy (so-called energy management maneuvers) such as nonzero

. angle-of-attack flight profiles and in-plane (pitch) changes. These maneuvers can also be
" considered as model errors in the Kalman filter that also are to be compensated for by

advanced Kalman filtering techmques

ngh fidelity, data-adaptive trackmg filters are by their nature designed to chase
boosters through significant maneuvers and model errors. Yet it remains to be
demonstrated that boost phase tracking filters using anglcs;only nicasurcmcﬁts can track
boosters accurately through pitch and yaw changes, staging and other thrust variations,
encrgy management maneuvers, and modeling errors, in a possibly dense observation

. environment.

The second method for booster tracking is to determine tl. ee-dimensional booster
positidn_é by associating and triangulating lines-of-sight across multiple satellites. Three-
dimensional velocity is computed by interpolation and numerical differentiation of the -
positions. . Compared to integrating the three-dimensional equations of motior, the
interpolation and numerical differentiation are inherently limited in the accuracy of their
velocity estimates, although it remains to be seen whether this accuracy is sufficient for

- BMD.

The last method is to use a nonlinear iterative least squares algorithm to fit the
angles-only sensor data to a priori booster altitude versus ground range flight profiles,
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where it is assumed that the booster's motion with.respect to the launch point is nearly
fixed in one plane.’ Template matching depends on the validity of the a priori assumptions
on altitude versus ground range flight profiles and the essentially two-ditnensional character
" of the trajectories. Unsophisticated guidance methods would tend to keep booster
trajectories to historical average flight profiles and essentially two-dimensional.

To initialize the Kalman fili.. the nonlinear iterative least squares algorithm‘ﬁ'ts the
angles-only sensor measurement data from an early portion of the powered-flight (60-120
seconds time after launch is common) to a priori booster altitude versus ground range flight
profiles. The least squares fit estimates the booster's three-dimensional state at the. time of
the last measurement, the current timg say, which initializes the Kalman filter, for it to
maintain track beyond this initial period. '

The same least squares fit estimiates the booster's tactical parameters. These are the
booster's initial statc,'u%hich consists of launch latitude and longitude, launch time, launch
. azimuth, launch altitude, and the degree to which the booster is lofted or depressed from
. some nominal trajectory. An estimated launch region is determined from the estimation
error. Estimation of tactical parameters is an important part of tactical warning and attack
assessment. '

TW/AA also mcludes decisions on mxssﬂc type. stsﬂe typing is important for

" BMD battle management and may be important in booster trackmg algorithms by helping to
determine values for booster thrust, mass, and drag used in Kalman tracking filters. A
template matching is performed in which sensor intensity measurement data is fit to
intensity versus time profiles. Missile type is decided according to the intensity template
that achieves the best fit

The angles-only data template matching also performs missile typing. One method
is to test which missile types can be found in the estimated launch region by comparison to
a data base of missile launcher locations or mobile missile patrol areas. Another method is
to select the missile type according to the template that gives the best fit of the angles-only
data to the altitude versus ground range profiles. "The latter is referred to as metric typing,

In the execution of template matchmg algorithms these specxﬁ., geestions remain to
be quantified:

*  Under what vicwing geometry and range conditions does the numerical
algorithm converge?

*  Whatis the accuracy and precision of the initial and current state estimate?
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-« What are the effects of clutter, false alarms, and multiple targets on
convergence and estimation performance?

+  How accurately can missile typing decisions be made and what is the relative
importance of the different missile-typing performance algorithms?

' 6.2.1 To Which Template Should the Observed Data Be Matched?

There are essentially four sources for templates. First, the Aerospace Corporation
publishes the Master Target Model Book which is a summary of booster flight
' characteristics based on data observed by national technical means and trajectory
reconstruction programs. Typically, there is one and only one set of profiles for each
missile typc and mod. No lofting or depression 1nformauon is present.

The missile systems in the Model book have a}ready flown in contrast to the future
systems that typically populate SDIO threat scenarios, which are set in the future. For
these future missiles, in an apparently ad hoc manner, the SDIO threat generation
community has produced templates using the same software that produces booster
" trajectories for the threat scenarios. Because they are made to order, in a sense, a family of
templates for each missile type and mod can be dcvelopcd to represent lofting and
* depression from nominal trajectories.

A third source is when: some contractors with sophisticated booster modeling
capabilities augmem whatever templates they are glvcn from whatever source to create
lofted and depressed templates. This is fine so long as somc check is mamtamed to prevent
the templates from being tuned to match the trajectones they are to track.

The final source is when threat trajectories ina particular attack scenario on a
particular threat tape are averaged into templates. Clearly use of this sort of template is
suspect. The immediate relationship of the booster trajectories in the threat with the

*. templates that are then used to track them, the very same trajectories that generated the

templates, produceé possibly invalid results and grossly misleading performance
assessments. This source of templates must be strongly discouraged.

The Master Target Model Book cannot supply the templates for SDIO scenarios set
in the future because of the mismatch between templates for missile systems that have been’
observed, on the one hand, and SDIO threat scenarios that involve future missile systems
that have yet to'ﬂy and for which no templates based on observed data can be constructed,
on the other. The corhmunity that produces the Model Book could be asked to produce
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témplates for future systems but this would represent a departure from their standard
methods, most importantly the reliance on observed data. SDIO, possibly by way of its
Threat Working Group, possibly in conjunction with the intelligence community, needs to
firmly control the development and promulgation of templates for use by SDIO contractors.
There currently is a gap of immense proportions between the intelligence cbmmunity
providing templates on current inventory missiles and the free-for-all of assumpuons on the
character and content of template data bemg made by SDIO contractors. If control is not

taken by SDIO, the validity of all template matching results is at ris’: and could be
considered suspect. :

One key issue is the diversity of templates and the uncertainty of their data.
Templates are a priori assuinptic‘ms for missile flight trajectories. Templates are also
averages over observed, historical flight profiles. There are, however, no uncertainty bars
around their data. How uncertain template data are because of uncertainties in the observed
data and trajectory reconstruction processing, how much templates vary by the source that
. produce§ them and by missile type and missile mod and whether it matters are all open
questions. The usual assumption made within the SDIO community is to use a bank of
templates to account for any wide diversity, with the tracking algorithm selecting the correct
template for a particular target and the particular template within a family of lofted to
dcprcsscd altitude versus ground range flight profiles for the missile type and mod.

The most important issue is the degree to which templates are identical to the
trajectories being tracked. Should they match? If the altitude versus ground range |
templates clos_ly parallel the booster trajectories to-be tracked then good template matching
performance should be expectcd In a sense, close identity is akin to havmg assumed away '
the problem: All the uncertainty in the booster motion is removed and captured in the .
~ @ priori data bases of templates. Unless we believe we can assume away the problem,
templates, in general, should not be identical to the actual booster trajectories to be tracked.
One exception might be third world missile forces whose unsophlsucated guldance systems
would keep the booster trajectories to simple flight proﬁles

- 6.2.2 'l‘emplates and the Use pf a priori Information

For some, use of a priori information should be very limited or even avoided
entirely. In response, it can be argued that the modeling assumptions that enter into
tracking filters are themselves a form of a priori information. These assumptions may
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include supposing that the booster jerk (the rate of change of the acceleration) is constant,
or that the booster will ﬂy a gravity turn in first stage, or that the thrust is constant for each
stage and that its magnitude is known, or that the booster will fly along a priori flight
profiles. But there are differences among types of a priori information both in content and
effect. '

A priori information can serve usefully to rcsﬁ‘ict target dynamics models and
compensate for information not present in measurements. For instance, in the model for
the deterministic and stochastic components of the dynamics, the algorithra designer relies
on his computational experience and intuition to govern what must be included and how it
is inciuded, and what can be neglected. Deciding whether and how to model variations in
thrust, for instance, is different in scale from assuming the booster will fly in the manner of
a priori flight profiles. '

The key concern is that reliance on a priori information may leave the algorithm
vulnerable to boosters that do not do the expected, or the mean, or are of type and
circumstance outside the a priori informr ation’s domain of applicability. The consequence
may be susceptibility to catastrophic failure. Balance is the key: use a priori information
when necessary but in a manner that is as flexible as possible and that does not leave undue
susceptibility to catastrophic failure. '

6.2.3 The Concept of Tracking Algorithm Architecture

Tracking algoﬁthm architecture refers to the structure and flow of information
within a tracking algorithm. The SDI Tracking Pancls have identified four basic trackmg
algorithm architectures:

Typel:  Individual sensors operate independently.

Typell: Individual sensors develop tracks independently that are then fused
across pairs and multiples of sensors and possibly fed back to the
mdxvxdual sensors.

Type III: Obscrvanons are fused across pairs and muluples of sensors and then
processed into tracks.

TypeIV: Observations and tracks are processed centrally aftcr association of
observations and tracks is perfotmed at each sensor.

Each architecture has its parueular strengths and weaknesses. Type I architectures
are the most survivable, have the least communication loads and simplest operational
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needs, but must track within the limitations of the information provided by only one
sensor. For instance, passive electrooptical sensors measure the angles-only information in
the line of sight to a target and do not measure range. Angles-only measurements provide
scant information by which to estimate booster dynamics, which are quite variable. This
single satellite anglcs-only booster trackmg filtering problem is a challenge to the state of
the art. '

Range can be obtained by fusing line-of-sight measurements across pairs of
satellites as in Type III algorithms. Fusion of lines of sight across pairs of satellites

demands large communication loads, and algorithms that rely entirely on having fused - -

lines-of-sight information are the least survivable. Moreover, the association of lines of
sight across stereo partners is a challenge to the state of the art in dense observation
envu'onmcnts arising from multiple targets, clutter, and false alarms

Type I algorithms can be subdivided into two groups bascd on whether the fused
multiple sensor tracks are fed back to the individual sensors. It is also useful to distinguish
whether the tracks being fused are focal plane tracks or full state tracks. Focal plane track
fusion has the same association éh»allcnge‘s as fusion of lines-of-sight. Euséd full state
tracks fed back to the sensor to replace each satellite's focal plane tracks tracks would then
be maintained by the satellites. Full state track fusion is less challenging owing to the

‘adcitional information in the full state which assists greatly in the association process.

Fusion of multiple satellite full state tracks is done to enhance the quality of the individual
sensor full state estirziates and to provide a comprehensive view of the surveillance region.

Type IV algorithms are “Jeal in terms of performance. Each sensor associates
observations and tracks, which are then passed : « for centralized data processing. Tracks
from the centralized data processor are used by the individual sensors for the association. ;
The estimation performance is ideal because ali available data are used in the processing.
Communication demands are very hxgh Operational demands typlcally are so great as to
make these algorithms impractical, however. -

In BMD trackmg algorithm dcvclopmenf work to date, Type I and Type Il
algorithms dominate, the latter mostly withov: feedback. There has been some
development work on Type III algerithms. We are not familiar with any credible Type IV
approaches
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6.3 SINGLE SENSOR MIDCOURSE ANGLES-ONLY TRACK
- INITIATION

In midcourse track inutiation, the targets are expected to be closely spaced in the real
three-dimensional space and, more importantly, on sensor focal planes, depending on
sensor resolution and signal processing and on sensor-object distance and aspect angle.
Closely spaced objects are expected to generate a large number of candidate track
assemblies, many with poor track purity. Impure track assemblies may suffer numerical
divergence or inhibited numerical convergence and inaccurate convergence values. The
immense cost in midcourse cold-start track initiation arises from the assembly of a large
‘number of candidate tracks, the computationai expense of computing initial state estimates
for each, and the computational and memory burdens for storing and somng candidate
tracks.

) Compuﬁng an initial state estimate from single sensor angles-only data of an object

. in orbit has a long and distinguished pedigree in celestial mechanics, where it is referred to |
as the problem of initial orbit determination. We shall describe the classical methods of
initial orbit determination of Laplace and of Gauss, includiﬁg the Herrick-Gibbs refinement

- to Gauss's method, that emphasize using the minimum possible data set of three sets of
azimuth-elevation angle measurements.” We shall also describe the estimation-based angles-
only initial orbit determination methods of Chang that use more than three measureinent
sets. Last, we shall describe a new algonthm proposcd by Taff et al. that is a new
approach to initial orbit determination.

6.3.1 Classical Argles-Only Initial Orbit Determinatipnf Laplace and
Gauss and Herrick-Gibbs :

The classical methods of initial orbit determination from three sets of angles-only
_measurements were published by Laplace in 1780! and Gauss in 1809.2 Both methods -
~ lead to equations of similar forn:

r

, 6-1
r2=p2+R2+2cp,R , D

According to Laurence G. Taff in Celestial Mechanics.

2 Gauss, K.F., Theoria Motus Corporum Coelestium, 1809 reprinted as Theory of Motion of the
Heavenly Bodzes New York, Dover, 1963,
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which leads to the eighth-order equation for r:

F#=(a2+R +2cAR)P+2B(A+cR)P+B . (62)
In these equations, p is the unknown sensor-object distance, r is the unknown object-earth
distance, R is the known sensor-earth distance, ¢ is a known number, and ‘A and B are
coefficients determined by, and particular to, Laplace's method and Gauss's method.

Laplace's Method _

Laplace's method uses the exact dynamics of a satellite orbiting a spherical earth,
the line-of-sight vectors determined by the angular measurements, and numerical estimates
of the first and second time derivatives of the line-of-sight vectors. Consider the object
located at r with respect to an earth-centered inertial (ECI) coordinate frame, the observing
sensor located at R in the same ECI coordinates, and the object located at p with respect to

a satellite-centered nom'otanng frame.3 Thus,

r=p+R . . (63

For a spherical earth, Newton's law of gravity states that .

1>
Il
-, l'l:

‘13 (6-4)

-] 7:
bl | 20

- Now p =pL , where L is the line-of-sight unit vector determined by the azimuth and

elevation angles. With Newton's law Egq. (6-5) becomes

v

 p(L+R
_-——3—-—- =E+

T

1>t

' ' - (6-5)
=pL+2pL+pL-

m |T=

3 Vector quantitics are denoted by underline
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By the following operation

LxLl)- :E%I:;m LxL)y-L+(@LxL)- —#B.
. r R (6-6)
(LxL)-i%—iB—)—Zp(LxL) L+(L><L) —IJR
, r : R
we can isolate p and dp/dt:

(6-7)

There are two critical issues in using Laplace's method. First, the accuracy with
which the time derivatives of L can be numerically computed from measurements of three
lines of sight. Second, the method fails when

Lxb-L=0 .
This is necessarily the case when the sensor satellite and target are coplanar.

Gauss's Method

From classical mechanics we know the motion of objects under the influence of a
central force (a force acting always along the line connecting the object to the force center)
is always motion in a plane: the angular momentum vector h = x y is constant. Gauss's

" 'method invokes the coplarar character of the three positions in the angles-only observations

and uses an analytical approximation for a power series solution of the equations of

) mouon

Consider the three three-dimensional positions 11, 12, and r3. Because the objects
are coplanar, the three position vectors are necessarily linearly dependent, that is, there
exist scalars c1 and c3 such that

16103 - (6-9)




Now, we can compute . .

i){l’2§2A12ﬂ |

=C,T xr =2c¢ A13_

3 (6-10)

oY
ﬁxie-z A23g
---cl.x.-]_xi=-2c1 ALw

where the Ajj's are the areas of the triangles formed by the vectors and w is a unit vector in
the direction of the angular momentum vector: w=h/ |h |. We immediately find that

¢3=Ap/As ! =Aplhy - (6-11)

* Below we shall derive the powef series solution of the equations of motion, which
take the form

‘where the F and G cocfficxents are often referred to as Lagrange sFand G coefﬁcxents
Using this result ve find

lvAua%‘_v_z_'-(i_'Lsz? =—-;- G, - (1, % \_rz_)=-% G,h
Ap=y Xy =3 Gh 613
Ap=w- (X 1)=1F G-F,Gph
siﬁcéh=;2x Y=l xy, |_§\_'. Therefore,
“=7F GGIF G, ° cl=_?—6€l}:_é_-' L (614)
13 - T173 3 o2
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Now the power series solution of the equations of motion

[la

Bl .
+31=0 (6-15)
is based on a Taylor series expansion for r about some [,

- ¥ O 4

i (6-16)
a0 n! dt®

t-tg)

Successive differentiation of the equations of motion involve higher order derivatives of '

1,8
g _de _ 3pdr_ 3edr

A — -~ — T e -"3 l
‘fr T T Tra T TTaw ¢
AA..I.E-EE
r dt r?
G VL -2V
a2 P dt ©17)
-y -c-22 '
2
v . '
'A'r—zl

- dv _zi.d!; v dr

dt r? -d_t. F.a-t-
- -2€A -2(11

We see that €, A, and y form a closed set under differentiation. We can now evaluate the
derivatives in the series expansion in terms of these expressions ' ‘

dr v dr v -€r

d T g dt =
4o

4 erer - Bedlr-[ely

ae* T ' . :
4 C(6-18)
—— =3¢Ar+3edr+3edy-¢v-ey

dt* | - -7

- [-15€A?-2€2+3ey]r+[6er]y
etc.
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In this fashion, the Taylor series expansion becomes

1) = F()r,+ GOV, (619

where 1 and v, are constants.

In Gauss's method the Taylor series expansion is about the intermediate state r, and
¥, and the analytical approximation truncates the Lagrange coefficients after the first two

terms
F=-1- -;"-(t‘-H)z + o
G - (i-t) - 521+ €2

The coefficients ¢, and c, are now casily expressed in terms of the times and r,
Substituting Eq. (6-3) and the expreséions for the ¢'s into the coplanarity condition Eq. (6

9), we can derive Eq. (6-1) for r; and p;. We can then determine 1, after which we can .

compute r; and r3.

To complete the initial orbit determination problem, we need an expression for ¥,

One method is to interpolate among Iy, [, and 15 and then numerically differentiate. The

Herrick-Gibbs* improvement to this method is to truncate the power series after the fourth

order term. With the position vectors as determined above we can compute an expression
¥, that is valid to fom'th-ordcr in time. | '

Gauss's method performs poorly when the analyhc approximations for the power
series solutions to the equations of motion are poor, and hence the values for the ¢

coefficients are poor. Whether this prevents the apphcanon of this method for ballistic

missiles is currently a matter of contention.

4 Gibbs, W.J., Mem. NatT Acad. Scx 4 (1888) and Herrick, S., The Laplacian and Gaassian Orbit
Methods, Umvemty of California Press, Vol. 1, No. 1, 1940,

6-17




6.3.2 Estimation-Based Initial Orbit Determination: Chang

Chang5 developed an iterative least square algorithm for estimating the state of a

nonlinear deterministic system with nonlinear noisy measurements which he applied to the
- problem of angles-only initial orbit determination using more than three observations.
Following Chang consider the nonlinear discrete system:

Xy - f0g)s 0l 62D
or nonlinear continuous system
' % - g(x) | (6-22)
and the nonlinear measurement equations: ‘
| You " .h-(l‘ml) * ‘—’».1. (§23)

where X is the state vector, y is the noise corrupted 'rxieasurem;nt vector, v is the white
Gaussian zero mean measurement noise process with covariance Rq, and n is the discrete
time index. We can always obtain .an equivalent discrete systemn from the continuous
system by numerical integration of the equation of motion: '

thel

X(t,.1) = x(1,)+ tl;g(z)dt
- fix)

(6-24)

We can relate the state vector at time n to the state vector at time 1 by iterating the.

equation of motion n times

5 - L) 625

5

C.B. Chang, Optimal Statg Estimation of Ballistic Trajectories wirh Angle-Only Measuremems. MIT
Lincoln Laboratory Technical Note 1979-1, 24 January 1979 and "Ballistic Trajectory Estimation with
Angle-Only Measurements,” IEEE Trans. Auto. Contr., Vol. AC-25, No. 3, June 1980, pp. 474-480.
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where if the system were linear f,,( ) would be the product of n transition matrices and if the

system were continuous then

£(x) = x(t)+ jg(;)dt : (6-26)
-4 _ ,

The algorithm iteratively processes a batch of data, y;, ¥, ..., ¥p» 10 determine an
estimated state sequence for x,, n = 1, ..., N that, subject to the constraints of the

equations of motion, minimizes the weighted least squares error:

N
3« 30, b )R G, -h) 2

. The minimization is accomplished by expanding the nonlinear system and
measurement equations in a first order Taylor series about an initial estimate of the true
state: ‘ ‘

. - ~ 90+ FOx 40
X fn“l) =&+ R, -8) ,
£ = £ (&) - initial estimate for x_

3‘1’ - initial estimate for x | (6-28)
0 of (.x.l) ' : '
F, = — - Jacobian of f (x ) evaluated at x|

515

he,) = B + HO(x -£0) | N
= b®) 4HFx -8) | (629)
o ShGx)| y '

H, - T = Jacobian of h(x ) evaluated at £

0

g

The minimization equation now reads
N T
1% 3 [y, - @)+ HIFY, -0 R,

=1 :
- I + HCERGs, - 10) -
6-19 '
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Taking the derivative of J with respect to x; and solving for x, yields

s |
Sl L Y ETHR |, -hE) - HEE - 1) - 9
b, -5} n-1 (6-31)

. | |
EF"H,?TR,,"H,?F" ilF.?TH:’TR;‘(x,-h@:»l :

nel

If the algorithm converges, the solution is a better estimate. than the initial estimate. If we
use the solution in the place of the initial estimate and repeat the calculation, and if the
algorithm converges, we will compute a further xmproved estimate. We have thus derived
an iterative algorithm:

-1

nel

N o
‘;F:’m"&“uﬂ-n@)] (6-32)

and the covariance of the estimate is

cqv @:.1) _ 'gpk'rH:'ar-lH:Fk " (6-33)
This follows fmm rewriting the estimate as
N -1
5 - 4+ [T EHRIHE,
§ F“H.:"’R, (v + HnF fx - % _,»] (634)

- X +

X, EF:’H.,”R.:‘&"F..‘
{nel )

B

nel

The procéss is terminated when'the difference in values of J between successive
iterations is below a threshold. From the estimate and covariance at the initial time, the
estimates at any time can be calculated as
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af ! '
= f(x)+ 32:- " (x,-%) (6-35)
%q = %4

= cov (%) = F, cov (g_l) F,,T

‘ The convergence of the algoriihm depends strongly on the initial guess for the
iterations. Chang suggested two procedures for computing the initial guess. One method
is to smooth the batch of angle measurements bx a second order polynomial to obtain their
derivatives. The smoothed angles and derivatives are applied to the equations of motion to
compute the range and range rate, which together form the initial guess. This algorithm is a
modification of Laplace's method that uses more than three observations. Its computation
of range and range rate fail when the sensor and target are coplanar, as does Laplace's
method. ' :

The second method uses the fact that total rr';cchanical energy is conserved during
the free-fall portion of flight. An alternative equation for range and range rate can be:
derived from the energy equation.' We can compute range and range rate with a guess for
the average total energy and using the smoothéd angles and derivatives. Thrasher§
discusses a method for detecting the inplane case.

Herget's method, which also uses more than three angles-only observations in a
least squares estimation algorithm, predates Chang's algorithm.”

6.3..3 Statistical Initial Orbit Determination: Taff Et al.

Taff et al.# adopt a very different point of view compared to the methods presented
above. Indeed, they regard the computation of initial orbits based on angles-only data as a
- "futile endeavor.” Their argument is essentially that the high observation density makes
' track assembly and cold start track initiation algorithms too expensive to implement. And
furthermore, the initial state =stimates they generate are of poor enough precision that

6 Roy Thrasher, State Estimation of Ballistic Trajectories with Angle-Only Measurements, Aiien
* Research Corporation Report ARC-TR-87-003, 21 May 1987.

Paul Herget, "Computation of Preliminary Orbits,” The Astronomical Journal, Vol. 70, pp. 1-3, 1965.
8 L.G. Taff, B. Belkin, and G.A. Schweter, "Statistical Initial Orbit Detérmination,” Proceedings of the
SDI Panels on Tracking, Issue No. 3, 1990, pp. 4-285 10 4-307. )
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subsequent data association attempts are complex and expensive, and ultimately do not give
good pcfformancc. Taff et al.'s method uses templates to represent all possible orbits from
a multitude of launch points to a multitude of impact points. The angles-only observational
data would then be used to select among the templates which have good estimation

precision. ,
| ‘Taff et al. begin by di’viding the Soviet Union into rectangles and similarly dividing
the conterminous United States, Alaska, and Hawaii. They develop a set of orbits
representing flights from each launch area into each impact area. The algorithm first selects
from among all possible orbits the set that best matches the first angles-only observation.
Then with the next angles-only observation, the algorithm selects the best match from the
subset. This results in one particular orbit.

This method is very interesting. By cdmputing the initial orbits with essentially two
angles-only observations it avoids the great challenge of cold-start track assembly. Initial

orbits could te determined for any two observations from successive frames. The
algorithm's feasibility .cmains to be’demonstrated, however.
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7. PERFORMANCE EVALUATION METHODS FOR
MULTIPLE TARGET TRACKING ALGORITHMS! .

Ultimately, the performance of tracking algorithfns is judged by the success, or

failnre, of the mission they support. The destruction of a target by an interceptor gnidcd, in

. part, by tracking irifoxmation’providcs one vivid, obvious measure of success. But, what

if the interceptor missed? Did the tracking algorithm perform poorly, or the guidance
algorithm, or the sensor and signal processing, or the rocket motor?

In a computer simulation of a cémplex system éompriscd of myriad subsystems and
algorithms, it is difficult without specific tests to untangle the performance of any
individual component. We describe measures of effectiveness to eValuatQ tracking
algorithm performance in computer simulations. While these might be considered to be
intermediate measures of effectiveness for the system as a whole, they are all important for

 diagnosing and evaluating tracking algorithms considered in their own right.

' Evaluation of tracking performance is su'ai‘g‘htforward in an environment of few,
widely spaced targets and no false alarms or clutter. In this sparse environment, a track is

' consistently updated with measurements from the same target. The track, or state estimate,
is then associated and compared with the true state of the target, which is obvious as
identified by the one source of the measurements.

Performance evaluation'is more complex in a dense environment of:

- False alams;

¢ Clutter;

¢ Multiple targets; | _ _

. Indsividual' observations arising from unresolved closely spaced objécts

(CSO:s).

. Ini this case, a track is not consistently updated with measurements from the same
target because some sensor observations of other targets, clutter, or false alarms will be

I This chapter lS a close adaptation of a paper co-authored with Oliver E. Drummond, Air Defense
Systems Division, General Dynamics, and presented at the SPIE Confercnce Signal and Data Processing
of Small Targets 1991, 1-3 April 1991, Orlando, Florida.

7-1




incorrectly associated with the track and some sensor observations associated with the track
will be of unresolved CSOs. With misassociations and unresolved CSOs, the source of the
measurements in a track will not be a clear indication of a single target, thus confusing
which track is to be compared with the true state of a target.2» 345 Furthermore, in a
dense target environment, there may be

»  Missed tracks: targets without tracks;

¢ Redundant tracks: more than one track for one target;

*  Spurious tracks: tracks for no targets whatsoever.

We describe scoring methods for evaluating the performance of multiple target
tracking (MTT) algorithms fairly without undue bias towards any particular type. For
instancé, some algorithms may generate many "extra" tracks, such as in mhltiple
hypothesis tracking, but the track purity and state estimation accuracy of the N best are

better than the N tracks of algorithms that do not knowingly generate "extra"” tracks, such

as local nearest neighbor. Insofar as. track purity and state estimation are concerned, the

_ former is to be preferred, whereas the latter may be preferred from the standpoint of

computational and memory costs and size, weight, and power of on-board processors.

These methods were dcvélopcd initially by individuals and further developed and
adapted by the members of the SDI Panels on Tracking. It is part of an ongoing process
and is not to be considered as the last word on the subject.

Track purity over a time interval refers to- the dcgr:é to which a track's
measurements over that time originate from a particular target. In single target tracking
without false alarms and clutter, track purity is ensured and the association of track-to-truth
unambiguous. Multiple target tracking typically involves many impure tracks and,
therefore, ambiguous track-to-truth association. We will define scoring criteria for track
purity in dense target environments. In principle, track purity can be used to determine

2 Q.E. Drummond, Multiple-Obje:t Estimation, UCLA Ph.D. Dissertation, 1975. Xerox University
Microfilms No. 75-26, 954. ‘

3 OE. Drummond, Muliiple Target Tracking Lecture Notes, UCLA, Oct. 1985: Revised 10 December
1990, Technology Training Corporation, Torrance, CA.

S.g. Blackman, Muliiple Target Tracking with Radar Applications, Artech House, Dedham, MA
(1986).

5 O.E. Drummond, "The Algorith.n Development Challenge of Tracking the SDI Dense Threat”, IST
Workshop on SDI: BMIC3, IDA. Alerandria, VA, 24 November 1987,
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track-to-truth associations but in dense target environments and for some MTT algorithms
the concept of track purity loses some of its meaning.

We suggest a method for track-to-truth association based on a global nearest
neighbor aslsignmcm approach. At each of the designated evaluation times, a global nearest
neighbor assignment algorithm is executed to uniquely associate tracks and targets. After
tracks and truth have been associated, we can evaluate performance criteria for the two
functions of a multiple target tracking algorithm: ‘ .

1. Data association. This function selects the observanons to be used By the track
filter to update the state estimate. . Its measures of effectiveness will be track
purity and misassociation. They measure the consistency Wwith which a track is
updated with measurements from a single target or a set of targets,

. respectively; and,

2. Track filter. This function transforms sensor measurements into estimates of

the target's state, usually the target's trajectory described by position, velocity, ,

acceleration, etc, and the target's state estimation error covariance. The
distance between the state estimate and the true state and the credibility of the
filter calculated covariance matrix measure the performance of the trackmg
filter, which is affected by data rmsassocxanon and other errors.

7.1 AN ASSIGNMENT APPROACH TO TRACK-TO-TRUTH
ASSOCIATION

A method for associating track-to-truth by assignment algorithm was introducedl2

in connection with the so-called "basis free” estimation, in which none of the information
sets used in the estimation pijoccss is'employed to distinguish one target estimate from
another. This approach has been adapted by the SDI Panels on Tracking. In the
assignment approach to performance evaluation, state estimates are paired to their nearest
true target state using a global nearest neighbor criterion, which is equivalent to ﬁnding the
most probable global hypothesis. ‘ :

The implementation of the approach is conceptually simple. The estimates are
treated as one data set and the truth as another. At each evaluation time an assignment
algorithm is applied to these two data sets so that there isa unique assignment of tracks to
truth. Asa consequence, no track (state estimate) is assigned to more than one true target
and no true target is assigned to more than one track. |

Local nearest neighbor assignments of track-to-truth are to be avoided. Target-
based local nearest neighbor, in which each target is independently associated with the
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nearest 1z.:!- does not penalize missed tracks: each target can always find a track because
tracks cau ¢ assigned to more than one target. Similarly, track-based local nearest
neighbor. in which each track is independently associated with the nearest target, does not
penalize redundant or spurious tracks: each track can always find a target because targets
can be assigned to more than one track. Because some tracks or targets are not assigned in
the global nearest neighbor assignment algorithm, missed, redundant, and spurious track§
can be identified.

In order to perform the assignment, a cost (goodness-of-ﬁt)l must be computed for
each candidate assignment: a pair of track and true target state. The optimal global
assignment finds the combination of pairs that provides the minimum sum of costs. Each
cost can be viewed as minus the log of the likelihood that the estimated target is the true
target for a given pairing. In most cases this can be computed as a chi-square statistic. The
parameter or state vector used in the cost can contain only position information or additional

“elements (such as velocity estimates and intensity) depending on the application.

Simplifications to the chi-square statistic can reduce the computing cost. For
example, the off diagonal terms in the covariance matrix can be omitted so that the chi-
square statistic is simply a weighted sum of squares. Furthermore, this approach to
performance évaluétion employs methods akin to the “assignment approach” (global nearest
neighbor) for multiple target tracking (MTT). Many of the specitic techniques used in

MTT, such as gating, "binning,” and "sparse” assignment algorithms, can be used to

reduce the cost of performance evaluation when using the described assignment approach.
-However, when using the sparse version of the assignment algorithm, such as the JVCS or

the Stephens-Krupa sparse Munkres,” it is important to pre-condition the input to the
. assignment algorithm to ensure that there is a feasible solution.2 9 "

7.2 DATA ASSOCIATION AND TRACK PURITY

With the assigned track-truth pairs, data association, track purity, and track
accuracy can be evaluated. Kovacich and Chong have described a scoring method for data

6 O.E. Drummond, D.A. Castanon, and M.S. Bellovin, "Comparison of 2D Assignment Algorithms for
Sparse, Rectanguiar, Floating Point, Cost Matrices,” Journal of the SDI Panels on Tracking, Issue No.
4/1990, 15 Dec. 1990, pp. 4-81 10 4-97. :

P.A. Stephens and N.R. Krupa, A Sparse Matrix Technique for the Murkres Algorithm, 1979 Summer
Computer Simulation Conferenc.. Toronto, Canada, July 1979, pp. 44-47.
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association and track purity that develops its own assignment of track-to-truth.8 They
define loose sense track purity over a specified time interval as a measure of effectiveness
for data association to evaluate the degree of consistent updating with measurements from
the same set of targcts.i This would be more appropriate in environments where often a
group of closely spaced objects geﬁcrate a single observation. They define strict sense
track purity over a specified time interval to evaluate the degree to which a track uniquely
represents a single target. This would be more appropnatc to evaluating trackmg in support
of targct discrimination. ' ' '

Consider the three different classes of data association algorithms discussed in
Section B: Iuniquc assignments to global or local nearest neighbors; probability data
association and joint probability data association (PDA/JPDA); and multiple hypothesis
trackmg (MHT). In nearest neighbor a551gnmcnt a track consists of a sequence of
individual observations, one from each frame of data, each arising from none, one, or more
targets. In the PDA/JPDA approach, at each update time, the set of observations with
feasible association to the track are associated with the track in proportion to their

.probability of association. A composite state estimate results which is a weighted sum of

the observations. A PDA/IPDA track, therefore, consists of a sequence of sets of
observations, a set for each update time, each set consisting of individual observations,

~ each observation arising from none, one, or more targets.

Now consider Reid's MHT? approach'which generates at each update time a set of
competing data association hypotheses that Reid called cluster hypotheses. Each cluster
hypothesis consists of one possible set of observation-to-track associations; a partfc dalar
observation-to-track association may appear in many different cluster hypathe ses.
Therefore, Reid's MHT produces tracks that consist of a sequence of ind:vidual
observations, one from each frame of data, each arising from none, one, or more t.<gets,
similar to nearest neighbor assignment. Hypotheses or tracks considered unlikel ', say
those below some threshold, are dropped, while those that are "similar" according to :"nie
criteria are combined.

Kovacich and Chong develop different track purity scores for what they terra 1s
single frame assignment logic; PDA/JPDA assignment logic, and MHT approaches. For

8 'Michael Kovacich and Chee Chong, "Definition of Track Purity,” The Proceedings of the SDI Traclang
Panels, Issue No. 3/1989, pp. 1-13 10 1-19, 1 July 1989.

9 Donald B. Reid, "An Algorithm for Tracking Muluplc Targets,” IEEE Transactions on Auzmmnc -
Control, Vol. AC-24, No. 6, December 1979, pp. 843-854, . ‘
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simplicity we will focus on track purity measures for what they refer to as single frame
assignment logic and apply 1t to the Example of Fig. 7-1 without regard to the data
association algorithm actually used Kovacich and Chong's other methods are described in ,

the appendix to this Section.

TRACK _OBSERVATION SET
1 (ab) (ab) a b e
2 e ° b a . ) (ab)
3 (cd) (cd) (cd) (cd) e
4 e (ef) e f FA
5 f ° f e f
6 ° P e

Flgure 7-1. Example of a Set of Hypothetical Track Histories. The letters
Indicate the target identifications that contributed to the observations
used by the tracks. Parentheses Indicate target composition

of unresolved closely spaced objects. ,

- Kovacich and Chong divide track pumy for single frame assignment logxc into threc
steps. For this purpose, Kovacich and Chong denote the sequence of individual
observations in a track as the Measurement Set for that track. The set of targets that
generate an observation they denote as the Target Set for the observation. In the first step,
compute a score function that serves as the criteria by which tracks are associated to truth:

Step 1 Given track i and target j, for strict sénse track purity compute
$SSG.j) = NM(,j)/NMEAS(G)
where

NM(i,j) = numbcr of observations in the Mcasurcmcnt Set for track i
' whose Target Set contains target j.

NMEAS(i)=  number of observations in the Measuremen Set for track i.
For loosc sense track purity, given track i and target j, compute
LSS(y) = NM(G,j)/NTGTS({)
where |
7-6
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NTGTSG)= s NTGTS(i,k)

NTGTS(i,k) = number of targets in the target set for the observation on
the kth observation opportunity.

The results of applying these to the Example are in Fig. 7-2. It seems that neither
properly accounts for a failure to associate any observation in the frame with the track, for
example, because of an empty gate. We suggest an alternative score, given track i and

target j
SAG) = 'NM(i,j)/NMEASF(j)
where

NMEASF() = number of frames that target j was detected in the field of
view during the time interval over which track purity is
being evaluated.

This score function is also in Fig. 7-2.

In the second 'step, Kovacich and Chong associate targets to tracks in strict sease
track purity usmg the SSS(IJ) as the score matrix in an assignment algorithm. Observe that
many assignment algonthms are designed to minimize the total cost (an undesirable
quantity) rather than maximize the total profit/benefit (a desirable quantity). Distance is a

cost but track purity is a\pmfit/bcnc'ﬁt. Thus, when assigning tracks to truth based on track .

purity, which is to be maximized, the individual profits have to be converted to cost, fcr
instance, by changing the sign. At the conclusion of this step, each track i will be
associated with a unique target, A(i), or none.

In loose sense track purity, Kovacich and Chong prescribe the use of LSS(3,j), as
well as other criteria-which they do not specify--to determine the set of targets to associate
‘with the track. They deéfine ASET() as the set of targets assocmcd with track i in this
manner. -

We input the score funcnons, SSS(@,j), LSS(x.J), and SA(X,]) to both JVC and
Stephens and Krup: sparse Munkres assignment algorithms, the results.for which are in

Fig. 7-3. There are other "optimal” solutions besides those in Fig. 7-3: Note the

- ambiguous track-to-truth association among tracks 1 and 2 and targets a and b. Note that

we used a global nearest neizhbor assignment algorithm with LSS because the other

criteria” were not specified.
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Figure 7-2. Track Purity Input Matrices for Assignment Algorithms.
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7-8
of




=

Figure 7-3. Optimal Assignments of Tracks to Truth Using Both the JVC and the
Stephens and Krupa Sparse Munkres Assignment Algorithms, Which Arrived at
the Same Answer.

Note that there are other “optimal” solutions, that is,
alternate solutions with the same value for the optimization criteria.
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Last, in ﬂ1c third step, compute the track purity:
Step 3 For track i compute the strict sense track purity
TPSS@) = NPURE(i.A(i))/NMEAS (i)
where ‘ |
TPSS(i) = the strict sense track purity for track i.

NPURE(,A(i)) = humber of pure observations in the measurement set for
track i generated by target A(i), where a pure observation
is one whose source is a single target;

for track i compute the loose scﬁsc track purity
TPLSG) = . 3 LSSGj).
j € ASET()
For companson we used SA(i,j) for both the cost in the assignment algonthm and
to computer the track purity. The various track purity scores are in Fig. 7-4

STRICT SENSE LOOSE SENSE . LOOSE SENSE
" PURITY PURITY ~ PURITY
TRACK # TPSS TPLS = . SA
1 25 50 | .60
v - 33 - 50 40
. 0 .. 50 | 1.0
4 ' 0 0 60
S 75 . -5 .60
' 1.0 1.0 0

_ Figure 7-4. Track Purity Scores

We feel that for performance evaluation at each evaluation time the association of

tracks to truth should be dsne once and for all using a global nearest néighbor assignment

 algorithm based on a chi-square distance measure. These pairings would then be used to

- =~'pate track purity, misassociations, state estimation errors, and the credibility of the filter

rrculated covariance, 'With this approach, the asswnment step in Kovacich and Chong,
. 7 would be obviated.
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Evaluation of the data association function in suport of target discrimination
should nut penalize for unassociaied observations but should penalize for associations to
wnresolved closely spaced objects, the wrong objcci. or false alarms. If one were to make

. 15signments as per Kovacich and Chong for strict sense truck purity, then the method
should be rewsed to use TPSS(i,j) rather than $58/1,5). .

Evnlu:mon of misassociation performance should penalize for unassoc: .ted
observadons as well as associations to the wrong object and false alarms and should ~ot
penelize for associations to unresolved close'y spaced objects. If one were to rna..v .
assignments as per Kovacich and Chong for loose sense track purity, then the methad
should be revised 10 use SA(i,j) rathcr than LSS(i.j). '

7.3 STATE ESTIMATION ACCURACY AND FILTER COVARIANCE
CREDIBILITY ‘ ; -

One straightforward measure of state estimation accuracy is the error magnitude.
Direct measures include position error, velocity error, etc., defined in the usual manner as
the magnitude of the position component, velocity component, etc., of the state estimation
error vector. Clearly, the smaller the errors the better but, for tracking considered
independently of other functions, how small is small enough? Because of the complicated
statistics describing position error, velocity error, etc. (square root of a sum of squared
jomtly normally distributed random variables), we cannot easily determine small enough in

- & statistical sense. :

State estimation error magnitude is related to bias error for which we will define
statistical tests. We will also define statistical tests to measure filter covariance credibility,
which occurs when the filter calculated covariance substantially differs from the actual
covariance in the state estimation error. Together bias and filter covariance credibility
measure the accuracy and consistency of the modeling assumptions of the tracking filter in
relation to the actual target dynamics and the effects of measurement errors, |
misassociations, and unresolved closely spaced objects. We will define tests for statistical
significance for each and determine confidence intervals to specify when thc state estimates
are good and the filter calculated covananoe is credxble. '

To test statistical significance in sin glc target tracking we would collect sample
statistics on the stochastic processes beir.g modeled by performing many Monte Carlo runs’
of the identical «cenario for a single target and its single track. The presence of |
misassociations in muluplc target tracking can introduce ambiguities in 1solat1ng the same
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si1gle vack-target pair over many Monte Carlo runs. In a dense er.vironment, the source of
the measurements in a track could vary with each run, as may the association of the track to
truth. For multiple target tracking simulations, one could perform one run of 8 large-scale
Monte Carlo simulation in place of repeating the target scenario over many Monte Carlo
runs. The collection of the M independent track-target pairs in the single Monte Carlo run
of a dense target tracking problem forms an ensemble of sorts over which we can compute
sample statistics for the stochastic pr&:csses being modeled. A wukness of this approach
pertains to differences in the covariance matrices across the M mcks all the tracks will not
be of the same age and model nonlinearities and variations in local obscrvmon densities can
causc differencas in track covariances.

7.3.1 State Estimitidn Error

Given the assignment of tracks to truth for various evaluation times, the accuracy of
the track state estimate can be evaluated. The type of estimates (predicted, filtered, or
smoothed) must be selected as well as the evaluation times. For each of the M track-target
pairs that are associated, compute the state estimation error as the difference between the
true target state x(k) and the track estimated state at time k given measuremcnts to time n:

2k|n) = x() - &k|n) @

The usual magnitude of the position estimation error, also known as the root-sum-
square (RSS) error, is computed by taking the square root of the sum of the squared
position components of the state estimation error vector.” The RSS velocity error (and
_ acceleration, etc.) is similarly computed. The sample cumulative probability distribution of

the error magnitudes can be plotted for all the target-track pairs. The missed, redundant,
and spurious tracks cannot be readily included in this plot unless default values are
‘previded for the tracks and the targets that are not paired, that is, left unassigned by the
- ‘global nearest neighbor assxgnmcm algomhm :

Both the mean and median of the RSS errors can be cdmputed. Before computing
these parameters, especially the mean, it may be acceptable to edit out the M worst tracks.
If this editing is allowed for the system being evaluated, then the value of M should be
specified in advance and the wors\  tracks should include all the spurious and missed
tracks. The requirement might also establish that a specified pcrccntagé of the tracks have
an error less than a given magnitude.
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7.3.2 State Estimation Bias

To test the bias of the state estimate, which is a vector, test each component of the
state estimation error individually. Under the hypothesis that the state estimate is unbiased,
and assuming that the error is normal'y distributed and, therefore, each componcm.
indexed by the subscript i, is also normally cistributed:

e, - 4k |n) - NOR,K|0)] . @

Assuming that each of the M state estimation errors is independent with identical mean and
covariance, we can compute the sample mean and sample variance to form a test statistic as
follows.

The sample mean of the ith component of the state €stimation error over the M
track-target pairs is defined as ' '

. 3{
& ,-ﬁ’z‘;[e,], | . -3

where j indexes the M track-target pairs and the time indices have been dropped for clarity.

The sample variance is defined as
' | M - ' ,
R = o

Wecan forma chi-squa:.ed distributed random variable with M.-.l degrees of freedom as

M-, - |
P b (VR ©(7-5)
X . ,

Now define a zero mean, unit variance normally distributed random variable

z-¢)F -NOD) " (7-6)
so that a t distributed random variable can be defined
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The ith component of the state estimatior. errur is unbiased when
SSTHY P P

_'where for & given covfidence level, 1 = a, iy follows from the properties of the
t-distribution function. ‘

7.3.3 Filter Covariance Credibility

If the estimate is unbiased then we can test for fiiter coyariince credibility by
forming another.chi-squared random variable following Bar-Shalom and Fortmann.'0 For
each of the M track-target pairs, compute the state estimaaon error chi-squares for the entire
state, position oniy, or velocity only, etc. For instance, the full state chi-square is:

e(k| n)- l:(k | n) P7}(k | n) 2(k | n) (19

© Xe,
where P is.the filter calculated covariance matrix and n, is the chi-square's number of
degrees of freedom, i.e., the dimension of the full state. We test the credibility of the filter-

calculated covariance P by forming an ensemble average chi-square as the sample mean
over the M individual track-target pair chi-squares, which are assumed independent.

- 1 X

2| n)- 1 3 ek n) @10

i1

where j indexes the M track-target pairs. Then

10 Yaakov Bar-Shalom and Thomas E. Fortmann, Tracking and Data Association, Academic Press,
. Orlando, Florida (1988). '
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Me(k]|n)= Xy, | (7-11)
and the confidence interval is computed from
~ Prob{Mé(k| n)e(r,r,)) = 1-a 68 =05 (7-12)

. For a given confidence lével. 1 = a, r; and ry will follow from the chi-square distribution
with M, degrees of freedom. The state estimation errors are consistent with the filter
calculated covariances if

e(k|n) ¢[r,/M1,/M] . (7-13)

. In addition to the scores for performance evaluar >n described, additional measures
of performance will be necded. Some additional track:ng scores of interest include the
number of missing tracks, redundant tracks, and spurious tracks. These can be readily
. computed after the tracks are uniquely assigned to the true targets. Performance evaluation
typically includes scores of track length and length of time to initiate a track (track
acquisition). The various tracking stages of initiation, maintenance, and termination for a
single sensor orhmultiple sensors as appropriate must also be considered. -

A number of tracking scores have been listed by Willman!! and others.!2 There
has been little in the literarure, however, on how to assign tracks to target truth in order to
fairly evaluate diverse tracking algorithms and adequately penalize missing, redundant, and
spurious tracks. This is not a significant issue for tracking a single target or in a sparse
environment. As system requirements call for tracking multiple targets in a moderate to

.dense environment or with low observables, this becomes a major concern in performance
evaluation. The evaluation methods described are designed to address these challenging
conditions by uniquely assigning tracks to true targets. :

11 w.w. Willman, Some Performance Results for Recursive Multitarget Correlator-Tracker Algorithms,
Naval Research Laboratory, Washington, D.C., NRL Report 8423, July 1980.

12 QOp. cit,, Bar-Shalom and Fortmann and Blackman (sce p. 7-14),
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7.4 CONCLUSIONS

We have presented scoring methods being pursued by the SDI Panels on Trackirg.
These methods attempt to represent the needs of & broad variety of MTT algorithms to be
judged fairly. The soring methods are part of an ongoing process and are not 1o be
considered the last word on the subject. The Panels have suggested that for the time being
these methods be adopled throughout the SDI tracking community, particularly for the
Surveiilance Testbed activity. '
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APPENDIX, CHAPTER 7,

The following is from Kovacich and Chong. 13

'+ Strict Sense Track Purity for JPDA

Step 1 Given track i and target j, compute

S = P(ij) / NNEAS()
where ' |
PiJ) = IPjk
P(ij.k) = Probubility that the composite measurement for track
' i on measurement opporiunity k contains target j.
NMEAS(i) = Number of coinposite measurements in the
' ' measurement set for track i.

Step 2 Uniquely assign targets using the S(i,j) matrix as the score or cost matrix. At the
conclusicn of this step, each track i will be assigned to a unique target A(i).

Step 3 Assign s measurement .~ the track for each measurement opportunity in which a
measurement occurred. For exar ple, assign the measurement that has the highest weight
in the composite measurement. Denote the measurement assigned to the track the Assigned
Measurement. ' : -

Step 4 Compute track purity for track i:

TPSS() = NPURE(G,AG)YNMEAS()

- NPURE(L.A(i)) ‘= Number of pure Assigned Measurements in the
Measurement Set for track i generated by A(i).

13 Op. cit., Bar-Shalom and Fortmann and Blackman (se¢ p. 7-14).
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NMEAS() ‘-

Number of measurements in the measurement set
for track §.

o Strict Sense Track Purity for Multiple Hypothesls Logics with '

Composite Tracks

" Step 1 Select one of the feasible tracks 1o represent the conpr site track. Fot example, the
feasible track that has the highest weighting could be selected.

Step 12 Perform Steps 1, 2, and 3 in the Track Purity calculation for Single Frame
Assignment Logics using the selected feasible track. The track purity for composite track |-
is defined 10 be the track purity of the selected feasible track.

*  Loose Sense Track Purity for the JPDA Logic
Step 1 Given track { and target j, compute

8(i) -

where
P(iy) -
P(Jk) -
NTGTS(i) -
 NTGTS(ik) =

PGj) / NTGTS(1)

I PG k)
£ J

Probability that the composite measurement for track
| on measurement opportunity k contains target §.

E. NTGTS(i,k)

Number of targets in the target set for the
measurement on the kth measurement opportunity.

Step 2 Using S(i.j), as well as other criteria, determine the set of targets to assign to the
track. Let ASET(i) specify the set of targets assigned to tracki.

Step 3 Compute track purity for track

TPLSG) o=

JIRI(H))
j € ASET()
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¢ Loose Sense Truck Purity for Multiple Hypoﬂmls Logics with
Composite Tracks

Sm 1 Perform Steps 1, 2, and 3 in the Track Purity c:lculuio‘n for Single Frame -
Assignment Logics to calculate a track purity for each feasible track: ‘

TPGY) ‘w  Track purity of feasible track in composite track |.

Sna 3 Compute the track purity for the composite track | as follows:
TP() - jz PGJ) * TPGY) |
i) »  Probability that the composite track i contains
feasible track j.
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